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STATISTICS
111 Semester (B.A./B.0)

Paper Code: ST 301 (Practical)

Maximum Marks: 50
External Assessment : 25
Internal Assessment : 25

Objectives: The objective of the course is to expose the students to the redl life

Title: Satistical Computing-I11

applications of Statistical Tools.

Syllabus: There shall be at least fifteen computing exercises covering the
applications of Statistics based on the entire syllabus of Course ST

301 (Theory).

Distribution of Internal Assesment (25 Marks)

(i) 1 Assessment
(i) 11 Assessment
(iii) ClassTest

(iv) Attendance

06 marks
06 marks
08 marks

05 marks



STATISTICS
111 Semester (B.A./B.Sc.)
Title: STATISTICAL INFERENCE

Paper Code: ST 301 (Theory) M. Marks : 100
Duration : 3Hours Theory Examination : 80
Credit : 4 Credit Internal Ass. : 20
Objectives:

Unit |

Unit 11

The main objectives of this course is to provide knowledge to the students
about the theory of estimation, obtaining estimates of unknown parameters
using different methods, testing of Hypothesis, Test of significance and use of
non-parametric test in the situationswhere parametric tests are not applicable.

The concept of sampling distribution, standard error and its significance,
sampling distribution of Chi Square, t and F with derivations, properties of
these distributions and their inter relations.

Estimation : Problem of estimation; point estimation, interval estimation,
criteria for a good estimator, unbiasedness, consistency, efficiency and
sufficiency with examples. Method of moments and maximum likelihood and
application of these method for obtaining estimates of parametersof binomial,
Poisson and normal distributions, propertiesof M.L.E’s(without proof), merits
and demerits of these methods.

Unit I 11

Testing of Hypothesis: Statistical hypothesis, Null and alternative hypothes's,
simple and composite hyothesis, two types of error, critical region, power of
test, level of significance. Best Critical Region, NP Lemma, its applications
to find most powerful in case of binomial. Poisson and normal distributions.
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Unit IV

Small sampletestsbased ont, F and Chi-square distribution and test based on
normal distribution, confidenceinterval for single mean, difference of means
and variance (only for normal case) confidence interval for single mean,
difference of means and variance (only for normal case). Test of signficance
for large samples for attributes and variable, proportions and means, single
sample, two samples (both paired and independent).

Unit V

Non-parametric tests: Concept of Non-parametric tests, advantages of Non-
parametric tests over parametric tests. Sign test for single sample and two
sample problems (for paired and independent samples), Wilcoxon-signed rank
test, Mann-Whitney U-test, run test. Median test and test for independence
based on Spearman’srank correlation.

Note for Paper Setting:

The question paper will contain three Sections. Section A will contain
compulsory ten very short answer type questions of 1 mark each. Section B
will contain 7 short answer type questions of 5 marks each at |east one question
from each unit and the student has to attempt any five questions. Section C
will contain 10 long answer type questions, two from each unit, of 9 marks
each and the student has to attempt five questions selecting one from each
unit.

Inter nal Assessment (Total Marks: 20)

20 marksfor theory paper in a subject reserved for internal assessment shall
be distributed as under :

() ClassTest: 10 marks

(i) Two Written Assignments/Project Reports : 10marks(05markseach)
Books Recommended

1. Goon, Guptaand Dass Gupta: An outline of statistical inference Vol-11

2. H.C. Saxena, Statistical inference.

3. Gibbons, J.D. : Non-parametric statistical inference.

4. Kendall and Struart: The advanced theory of statistics Vol-I|
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Connor W.J. : Practical Non-parametric Inference

Hogg. V. and Craig A.T. : Introduction of Mathematical Statistics.
Mood and Grayhbill : An introduction to theory of Statistics.
Srivastavaand Srivastava: Statistical Inference : Testing of Hypothesis
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Unit 1 Lesson 1

CONCEPT OF SAMPLING DISTRIBUTION AND SAMPLING
DISTRIBUTION OF CHI-SQUARE

Structure:

1.1  Introduction

1.2 Objectives

1.3 Concept of Sampling Distribution

1.4 Chi-Square distribution

1.5  Derivation of Chi-square (3 ?2) distribution

1.6 Moment generating function of Chi-square (y?) distribution
1.7 Limiting form of Chi-square (y?2) distribution

1.8 Mode and Skewness of y 2 -Distribution

1.9  Additive Property of y 2 -variates.

1.10 Applications of Chi-square distribution

1.11 Relation between F and y 2 distribution

1.12  Self assessment question.

1.1 Introduction

We know how samples can be taken from populations and can use sample
data to calculate statistics such as the mean and the standard deviation. If we apply
what we have learned and take several samples from a population, the statistics we



would compute for each sample need not be the same and most probably would

vary from sample to sample.

Suppose our samples each consist of eight 20-year-old men from a city
with a population of 100,000. By computing the mean height and standard
deviation of that height for each of these samples, we would quickly see that the
mean of each sample and the standard deviation of each sample would be
different.

A probability distribution of all the possible means of the samples is a
distribution of the sample means. Statisticians call this a sampling distribution of

the mean.

Describing Sampling Distributions

Any probability distribution (and, therefore, any sampling distribution) can
be partially described by its mean and standard deviation.

In the above example, the sampling distribution of the mean can be

partially described by its mean and standard deviation.

Understanding of sampling distributions allows statisticians to take
samples that are both meaningful and cost effective due to the fact that large
samples are very expensive to gather, decision makers should always aim for the
smallest sample that gives reliable results.

In describing distributions statisticians have their own shorthand and
when they use the term standard error to describe a distribution they are
referring to the distribution standard deviation Instead of saying “the Standard
deviation of the distribution of Sample means” they say “the standard error of the
mean.” which indicates how spread out (dispersed) the means of the samples are.

Chi-square test is one of the most commonly used tests of significance.
The chi-square test is applicable to test the hypotheses of the variance of a normal
2



population, goodness of fit of the theoretical distribution to observed frequency
distribution, in a one way classification having k-categories. It is also applied for
the test of independence of attributes, when the frequencies are presented in a two-
way classification called the contingency table. It is also a frequently used test in
genetics, where one tests whether the observed frequencies in different crosses
agree with the expected frequencies or not.

1.2 Objectives

Understanding of sampling distributions will enable the students to have
basic knowledge about the behavior of sampling distributions so that samples that
are both meaningful and cost effective can be taken, due to the fact that large
samples are very expensive to gather, decision makers should always aim for the
smallest sample that gives reliable results.

The knowledge of Chi-square test will acquaint the learners to test the
hypotheses of the variance of a normal population, goodness of fit of the
theoretical distribution to observed frequency distribution, in a one way
classification having k-categories. It is also applied for the test of independence of
attributes, when the frequencies are presented in a two-way classification called
the contingency table. It is also a frequently used test in genetics, where one tests
whether the observed frequencies in different crosses agree with the expected
frequencies or not. In short the main objective of this lesson is to

. To introduce the Chi Square distribution and learn how to use them in

statistical inferences
. To recognize situations requiring the use of Chi-square test

. To use Chi square test to check whether a particular collection of data is

well described by a specified distribution

3



. To see whether two classifications of same data are independent of each

other

. To use Chi square distribution for confidence intervals and testing

hypotheses about a single population variance

1.3  Concept of Sampling Distribution

Distribution relating to an estimate of a specific population parameter is
called a sampling distribution of that estimate. Suppose, for example, that we
wish to estimate the mean family income of a particular district in a given year on
the basis of a sample of say of 200 families. Assume that we use mean of the
sample to estimate the population (family income of the district) mean. We can
draw an infinite number of samples from the district and calculate the value of the
sample mean from each sample. These values can now be arranged in the form of
a (frequency) distribution which would be called a sampling distribution of
sample mean. Note that although the population of all families in the district is a
finite one, the number of samples that we can draw from this population is infinite
as long as we allow each family to be included in any sample. Such sampling is
called sampling with replacement. We would know all about the possible behavior
of our guesses by studying the resulting sampling distribution. Had we used some
other estimator, e.g., mode or median in place of mean, the resulting distribution
would have been called sampling distribution of mode or median. As such we can
obtain sampling distribution of any estimator or test statistic.

We did not refer to size of the- sample while understanding the concept of
sampling distribution, it is quite obvious that samples of different sizes give
different types of information about the population from which they are drawn. To
avoid the effects that are due to the change in size of the samples, a sampling
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distribution always refers to samples of the same size. The effects of’ changing the
sample size are then studied by comparing the different sampling distributions
built with different size of samples.

Moreover, it can also be seen that sampling distribution of sample mean, in
fact, is a probability distribution; because the income of the family as well as the
mean income of the sample (drawn from the district), both are random variables.

But how does sampling distribution help to obtain a good or reliable

guess?

Suppose we have obtained the sampling distribution of sample mean for
the above example of family incomes. In case the mean of the sampling
distribution turns out to be the value which is equal to the true value of the
parameter, then the mean is said to be a good guess (or a good estimate) for the
population parameter. To generalize, we say that an estimator is said to be a good
estimator if the mean of the sampling distribution of that estimator is found to be
equal to the true value of the parameter. An estimator would be a perfect estimator
if its sampling distribution is concentrated entirely in one point and the point is
also the true value of the parameter.

But in practice perfect estimators are very rare and can be obtained only if
there is no variation in the population so that every sample drawn from the
population gives rise to same mean value which also happens to be the true value
of the parameter. Naturally, therefore, we have to be satisfied by less than a
‘perfect guess’; but again one can ask—to what limit? Statisticians provide this
limit by stating some properties of an estimator that are commonly considered
desirable for an estimator to be called a good estimator. The desirable statistical
properties fall into two categories: small sample (or finite-sample) properties and
large sample (or asymptotic) properties. Underlying both these sets of properties is
the notion that an estimator has a sampling distribution.
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Usually parameters are unknown and statistics are used as estimates of
parameters. The probability distribution of a statistic is called its ‘sampling

distribution’

Remark;-The value of a statistic varies from sample to sample; but the

parameter remains a constant However, since the parameter is constant it has

neither a sampling distribution nor a standard error.

1.4  Chi-Square distribution

So far, we have been discussing the distribution of mean obtained from all

possible samples, or a large number of samples drawn from a normal population,

2
distributed with mean pand variance 2 .
n

Now we are interested in knowing the distribution, of sample variances s*
of these samples. Consider a random sample of size n. Let the observations of this
sample be denoted by X3, X,...,Xy .

We know that the variance,

s? :%Z(Xi -x)> fori=1,2,...n.
n—-153

i(xi - X)2

A quantity ~~————, which is a pure number, is defined as 2 .
O

The distribution of the random variable y2 which was first discovered by

Helmert in 1876 and later independently given by Karl Pearson in 1900 when Karl

Pearson used it for frequency data classified into k-mutually exclusive categories.

Another way to understand chi-square is: if X3, X3, . . .Xn are n
independent normal variates with mean zero and variance unity, the sum of

squares of these variates is distributed as chi-square with n degrees of freedom.
6



More precisely, the square of a standard normal variate is known as a chi-
square variate with 1 degree of freedom (df.).

Thus if X ~N(o?) thenZ =2 —H - N(01) and
(e}

2
z? =(X _“j is a chi-square variate with 1 d.f.
(e)

In general if Xi, (i =1, 2, ..., n) are n independent normal variates with

means p; and variances o2 (i=1, 2, ..., n), then

2
7%= Z( Xi—th ] is a chi-square variate with n d.f.
i=1\ O

1.5 Derivation of Chi-square (y?) distribution

If Xi, (i=1, 2, ..., n) are n independent normal variates with means p;and

variances as? (i =1, 2, ..., n), then we want the distribution of

2
2 [ X -4 -2
= —_— = u.
x Z( Oj =g

i=1
where u, = XM - N(01)
i
Since Xi’s are independent, u; s are also independent. So that

sz(t):Muiz(t):ilriIlMuiz(t):[Muiz(t)]” (D)

[ u;'s are iid N(01)]

M, (0) = Elexp(t, 1= [ex(t,2)f (x,)x

—00



- I eXD(tu.) \/2_exp{ (X; —n)? /252 Hax;

ZT Texp(tu?)exp— (u;)?/ 2duy; {Ui ZM}

—00

(2
o e f}%

2

—(1-2t) V2

As {fwe-azxzdx - ﬂ}

a
M. (t)=(1-2t) "2 (Using eq. 1)
which is the m.g.f of a Gamma variate with parameters %and %n

Hence, by uniqueness theorem of m.g.f’s,

2

niX-— . . . 1

v = Z( B ] is a Gamma variate with parameters % and =n
i=1I\. O

R S

1

a7 0<y2 <o

which is the required p.d.f of Chi-square distribution with n degrees of
freedom.



e Ifar.v. X has a chi-square distribution with n d.f., we write X ~ X(zn)

and its p.d.fis

( ) 1 e—x/ZX(n/Z)—l

X)=———— 0<X <00
2'°T(n/2)

e Normal distribution is a particular case of y 2 -distribution when n =1,

since for n=1,

e’lez(xz)a’z)’ldxz 0<X <o

1
2 = @
P(x)) \/?1_,(1/2)
P(:2) )=%6Xp(x2 12)dy? o <x <o

1.6 Moment generating function of Chi-square distribution

Let X~y2(n)

then M (t)=E[e™]= [ e™f (x)dx

— gn/21—1( B Ofetx_e—x/zx(n/z)—ldx
niz)o

1 2 1-2t (n/2)-1
=———|exp| -| —— |x |X dx
2”’21“(n/2)£ p{ ( 2 ”

1 r(n/2)
C2"2r(n/2) [(1-2t)/ 2]

{By using Gamma integral}

=(@-2t)"'?, J2t<1

which is the required m.g.f. of a y 2 -variate with n d.f



1.7 Limiting form of Chi-square (;(2) distribution for large degrees of

freedom

Let X~y%(n) then m.g.f. of a y?2-variate with n degrees of freedom is

given by
=(@-2t)"'?, J2t<1
The m.g.f. of standard normal variate Z is

M (x -/ (1) e M x)(t/o)

= My(t)=e o q-2t/) M 2=e N 1ot/ fon "

Since for Chi-square (?) distribution mean p=n and variance o2 =2n

n n 2
K,@t)=logM, (t)=-t,|—. ——log| 1-t.|—
z(t)=logM (1) ,/2 > g[ \/nJ
_ o nonf, [2 22 (27
= -t )=+t —F——+—| — Forerreenns
2 2 n 2n 3{n

n n t Ly -1/
=—t,|—.+t,]=—+ —+0(n = —+0(n
(i3 groma= Groe ™

Where O(n~Y'? are the terms containing n'’2and higher powers of n in

the denominator

2
Now Lisz(t)z% = M, ({t)=e'’? as n 5w
n—oo

which is the m.g.f. of a standard normal variate. Hence, by uniqueness
theorem of m.g.f. Z is asymptotically normal. In other words, standard 2 variate
tends to standard normal variate as n — «.

Thus, 5?2 distribution tends to normal distribution for large d.f.
10



1.8 Mode and Skewness of 42 -Distribution
Let X ~y2 (). S0 that
(X) 1 e /2 (/21 0<X <o

221 /2)

Mode of the distribution is the solution of f'(x)=0 and f"(x)<0f"(x)

Logarithmic differentiation w.r.to x in (1) gives:

f"(x):0-1/2+( n jlz(n—Z—xj
f'(x) 2-1.)2 2X
Since f(x)=0, f"(x)=0 =>Xx=n-2

It can be easily seen that at the point, x=(n-2), f"(x)<0

Hence mode of the chi-square distribution with n d.f. is (n -2).

Mean —Mode

We can write  Skewness =
SD

_n—(n—2)_\/z
~ Jan \n

Since Pearson’s coefficient of skewness is greater than zero for n>1, the

2 distribution is positively skewed.

1.9 Additive Property of y?-variates.

The sum of independent chi-square variates is also a 2 -variate. More

precisely, if X., (i = 1, 2, ..., k) are independent y?-variates with n;, d.f

k k
respectively, then the sum>" X, , is also a chi-square variate with >'n; d.f
i=1 i=1

11



Proof:- We have M, () =1-2t)""% i=12,....k
k
The m.g.f of the sum >’ X; , is given by
i=1
My x, ©) =My, (OOMy, [©)....Mx, (1)
[ X;'s are independent]

—(1-2t) ™22t M2 a—2t) e R o gy (e e N2

which is the m.g.f of a y2-variate with (ny + n, + ... + ny) d.f. Hence by

k k
uniqueness theorem of m.g.f ‘s, > X; isa y*-variate with >'n; d.f
i=1 i=1

Note; Converse of above theorem is also true,

1.10 APPLICATIONS OF »*-DISTRIBUTION

o  y’test for Inferences About a Population Variance: Suppose we
want to test if a random sample Xx,,X,....X,,has been drawn from a normal
population with a specified variance o2 =c¢ (say). Under the null hypothesis that
the population variance is ¢% =2, the statistic

x2=i{@} {iu ZX)} ﬁ
(e} GO

i=1 0 i=1 Op

follows chi-square distribution with (n -1) d.f.

By comparing the calculated value with the tabulated value of 42 for (n -
1) d.f at certain level of significance (usually 5%), we may retain or reject the null

hypothesis.
12



If the sample size n is large (>30), then we can use Fisher’s approximation
and apply Normal Test.

NV2x? ~ N (+/2n -1, 1)
sothat Z =422 —(v2n -1) ~N(0)

o  y’test for Goodness of Fit Test. This test is used for testing the
significance of the discrepancy between theory and experiment was given by Prof.
Karl Pearson and is known as “Chi-square test of goodness of fit”. It enables us to
find if the deviation of the experiment from theory is just by chance or is it really
due to the inadequacy of the theory to fit the observed data.

Iff; (=1, 2, ..., n) is a set of observed (experimental) frequencies and
ei (i=1, 2,n) is the corresponding set of expected (theoretical or hypothetical)
frequencies, then Karl Pearson’s chi-square, given by

o-3[0] (1)

i1 €; i1

The above defined statistic

follows chi-square distribution with (n - 1) d.f.

e 4?Test of Independence of Attributes: Let us consider two
attributes A divided into r classes As, A, ..., Ar and B divided into s classes By,
B,, ..., Bs. Such a classification in which attributes are divided into more than two
classes is known as manifold classification. The various cell frequencies can be
expressed in the table known as r x s manifold contingency table where (A) is the

number of persons possessing the attribute A, (i=1, 2, ..., r), (B;) is the number of

13



persons possessing the attribute B; (j = 1, 2, ..., s) and (AB;) is the number of
persons possessing both the attributes Ajand Bj, (i=1, 2, ...,1;=1, 2, ..., 9).

Here the problem is to test if the two attributes A and B under

consideration independent or not.

Under the null hypothesis that the attributes are independent, the

theoretical frequencies are calculated by using

__ith row total x jth column total
! sample size

the test statistic in this case is given by
2
2 zi[(fij —€j) }

Where e;; is the expected frequency in column i and row j

fij = observed frequency for contingency table category in column i and

row j which is distributed as a y 2 -variate with (r - 1) (s -1) degrees of freedom.
1.11 Relation between F and y?distribution

In F (ny, ny) distribution if we letn, — oo, then F follows y?2 -distribution

with ny d.f.
n /2 ("?)-1
Proof. We have f (F) = (ny ;)" " F :
r'(n,/2)0(n,/2)
r'(n,+n,)/2

O<F<ow

(n+ny) /27
n
1+-1F
n2

As the limit n, - we get

14



1.12

r(n,+n,)/2 (n,/2)™* 1

n (ny+ny)/2 n n /2 T nl2 (1)
(1+1 F] 2 2
r]2
I'(n+k) ‘
c——2 3N asn—o>w
r'(n)
Also

n (n+ny)/2 n n, 12 n n /2
Lim (1+—1F] =Lim Hl+—1F] ] x Lim (1+—1F]
N, —ow n2 N, —>w n2 N, —>w n2

=exp(n;F /2) =exp(x?/2) (o nF =?)

Hence in the limit, on using (1) and(2) the p.d.f of 2 =n,F becomes

n 2,212 (. 2\(Mm/2-1 /5
dp(y2)=ufare 7T fy” dl 2=
I'n,/2) ny ng

1

S o)
1

Which is p.d.f of y?with n; degrees of freedom

Self assessment question
1. Explain why we call Chi-square distribution as sampling distributions?
2. Write the parameters of the Chi-square distribution:

3. In what situation Chi-square distribution tend to normal distribution

derive the condition for the same

15



4.By using m.g.f of Chi-square distribution find mean , variance, pj,p,

skewness and kurtosis

[Hint: Mean =n, Variance = 2n, 15 =8n, u,= 48n + 12n?
8 12
:—’ = — 3
B1 n B2 m+ 1

5. State the assumptions underlying Chi-Square test when applied as the
test of significance for testing of null hypotheses.

6. A random sample is drawn from a normal population. The data give
sample size and sample variance only. What statistic would you use to test the
hypothesis that the population variance has a particular value ? Give reasons.

7. State applications of y?distribution.
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Unit 1 Lesson 2

DISTRIBUTION AND ITS PROPERTIES

Structure:

2.1 Introduction

2.2 Objectives

2.3 Concept of t distribution and its derivation
2.4 Constants of t-distribution

2.5  Limiting Form of t-distribution
2.6 Graph of t-distribution

2.7 Application of t distribution
2.8 Exercises

2.9  Self assessment question

2.1 Introduction

This distribution was discovered by W.S. Gosset in 1908. The statistician
Gosset is better known by the pseudonym ‘student’ and hence t-distribution is
called student’s t-distribution. He derived the distribution to find an exact test of a
mean by making use of estimated standard deviation, based on a random sample
of size n. R.A. Fisher in 1925 published that t-distribution can also be applied to

the test of regression coefficient and other practical problems.
2.2 Objectives

Understanding the sampling distributions enable the learners to have basic
knowledge about the behaviour of sampling distributions so that meaningful and
cost effective samples in order to apply these samples in test of significance. In

17



fact, decision makers should always aim for the smallest sample that gives reliable

results.

The knowledge of t distribution and its properties test will give the
learners the basic idea to test the hypotheses about single mean, two means,
difference of two means, to test the significance of the observed sample
correlation etc. This Lesson will also give us information about its inter-relations

with the other distributions etc

. To introduce the t distribution and learn how to use them in statistical
inferences

. To recognize situations requiring the use of t test

. To use t test to the hypotheses about single mean, two means, difference of

two means, to test the significance of the observed sample correlation etc.
2.3 Concept of t distribution and its derivation

While deriving and defining t distribution we make use of the following

assumptions

Assumption for Student’s t-test. The following assumptions are made in
the Student’s t-test

(1) The parent population from which the sample is drawn is normal.
(if) The sample observations are independent, i.e., the sample is random.

(iii) The population standard deviation o is unknown.

Student’s t distribution. Suppose X Xz,...X, be a random sample of size n
drawn from a normal population with a specified mean, say pu and variance 2.

Then

18



The Student’s t- statistic is given by
_X-p

t =
Y

_ 1 12 2 . . .
where Xx==Yx; and s? :ﬁz(xi —X)? is an unbiased estimate of
i-1 —4i-1

population variance o2

The above defined statistic follows student’s t distribution with v=(n-1)

d.f with p.d.f given by

f(t)=

Remarks about t distribution

e Ifwetake v=1inthe above expression (1) we get:

1 1 1 1 et o _
f(t)_B(;;j.(lﬂz)_;.(lﬂz) —o<t<ow as T(1/2)=+r

which is the p.d.f. of standard Cauchy distribution. Hence, when v =1,

Student’s t distribution reduces to Cauchy distribution.

Derivation of Student’s t-distribution. The Student’s t- statistic is given by

t= ? This expression can be rewritten as
o

n(X-p? nx-p)°
S? ns?/n-1

t2

19



t? _x-w® 1 (X-w?/s’/n)
n-1) o%/n ns?/c? ns?/c?

Since X, (i=1, 2, ..., n) is a random sample from the normal population

with mean p and variance <2 so that

U

X ~N(1,5%) f:/‘“w(o,l)
i

(X —2#)2
A
2

square variate with 1 d.f. Also % is a chi-square variate with (n-1) degree of
(9

Hence being the square of a standard normal variate is a chi-

freedom

2
Further since x and s® are independently distributed t—l being the ratio
n —

of two independent y2-variates with 1 and (n -1) d.f. respectively, is a variate

B(%”T‘lj and its distribution is given by

1 1 2 . 2
dF (t)=—~—. (V+1yd(t4) 0<t? <o
B(j [ tzJ 2
2 2) |1+—

v

= 1 . ! dt —o <t <o

JvB (1,") [ 2 J(W%

1+—
v

This is the required probability density function of Student’s t-distribution
with v=(n-1) d.f,

20



Remark-Factor 2 disappears since me integral from —ooto o must be
unity.

To decide about the acceptance or rejection of null hypothesis we now
compare the calculated value of |t| with the tabulated value at certain level of
significanceo . If calculated |t|>tabulated t, null hypothesis is rejected and if
calculated |t|< tab. t, Ho may be accepted at the level of significance adopted for

(n-1) degree of freedom.

Importance of Student’s t-distribution in Statistics. W.S.Gosset, who
wrote under pseudonym (pen-name) of Student defined his t in a slightly different
way, Vviz., t=(x-u)?)/s and investigated its sampling distribution, , Prof. R.A.
Fisher, later on defined his own ‘t” and gave a rigorous proof for its sampling
distribution in 1926. The salient feature of‘t’ is that both the statistic and its
sampling distribution are functionally independent of &, the population standard

deviation.

The discovery of‘t’ is regarded as a landmark in the history of

statistical inference. Before Student gave his ‘t’, it was customary to replace o2

X_
A

Vi

inz=2"% by its unbiased estimate to give and then normal test

7
Jn
was applied even for small samples.

It has been found that although the distribution of t is asymptotically

normal for large samples it is far from normality for small samples.

The Student’s t ushered in an era of exact sample distribution (and tests)
and since its discovery many important contributions have been made towards the

development and extension of small (exact) sample theory.
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Confidence or Fiducial Limits for 4 .

If typsis the tabulated value of t for v=(n-1d.f. at 5% level of

significance, i.e.,
(P|t|>t0_05)20.05 f— (P|t|£t005)2095

then 95% confidence limits for p are given by:

n
S/4n

[t| <toos ie. <105 = X ~tgo5S/Yn <p<X-tgosS/Yn

Thus, 95% confidence limits for pare X +tyqsS/vn

Similarly, 99% confidence limits for u are X+t o; S/vn

where too1 IS the tabulated value of t for v = (n-1) d.f at 1% level of

significance.

Fisher’s ‘t” (Definition). It is the ratio of a standard normal variate to the

square root of an independent chi-square variate divided by its degrees of
freedom. If ¢ is a N(0, 1) and x2is an independent chi-square variate with n d.f.,

then Fisher’s t given by

to_ 5

i

and it follows Student’s “t” distribution with n degrees of freedom and its

p.d.f is given by
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1 1
— ) —o<t<oo

el )

1+ —
n

Which is the probability density function of Student’s t-distribution with n

d.f
Hence, Student’s ‘t” may be regarded as a particular case of Fisher’s ‘t’
Remark-Since

X ~N (u,52/n) E=X TR ON(OD) )

T
And
2_n_32_ < \2 2
7 = _;(xi ) /o . (2)

distributed independently as chi-square variate with (n-1) d.f. Hence

Fisher’s t is given by

(o & _dnx-p o _Inx-p
o-y o Jx-win-y s

G

s/\/ﬁ

And it follows Student’s t-distribution with (n -1) d.f.Now, (3) is same as

Student’s “‘t” .Hence Student’s ‘t’ is a particular case of Fisher’s ‘t’

2.4 Constants of t-distribution

Since f(t) is symmetrical about the line t=0, all the moments of odd order

about origin vanish, i.e.,
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15, 1 (@bout origin ) =0, r=012..

In particular, u! (about origin) = 0 = Mean

Hence central moments coincide with moments about origin.
o =0, r=0212...

The moments of even order are given by

M =y (@boutorigin) = [* t*f (t)dt =2["t*" f (t)dt

1 n J. (n+1)
,‘/n B —,— 0 2 2
(2 2) (1+t]

This integral is absolutely convergent if 2r <n.
2

Put 1+t—=1/y 2 =NL7Y) :>2tdt=—lgdy
n y y

When t =0,y =1 and when t=w, y = 0 .Therefore

0 2r 1
2 t -n _ n 2 \2r-1/2 1)/2]-2
] et e s L A
- — ~— 10
ne 2’2}1(1/3/) 2 nB[z’z}
1 r-1/2 . )
= n j{n[l‘yﬂ ylo/2k2gy {Using the value of t
T
2
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= n’ B(E—r,r+l}
B(l,n) 7 7
2 2
—nr I[n/2-r]Tr +1/2]
ry2rn/2

—n' (r-22)(r-3/2)....3/2.1/2T(n/2-r)
ry2mn/2-1n/2-2]...[n/2-r1rn/2-r]

_ ¢ (@r-=-D(2r-3)....32.1 n
=n ;—>r
n-2)(n-4)..n—-2r) 2
I n particular
=N 1 = n n>r
He =02 -2
2

s =n2 31 3n ns>a

M-2(n-4 (-2(n-4)

2
Hence S, =#—§ =0 and

2

oot ote) 453
Cow ((n-2)n-4)) ((n-2) (n—4)

Note: (i) Moment generating function of this distribution does not

exist

(ii).1f the random variables X; and X, are independent and follow chi-
square distribution with n d.f., then vn (X, -X,)/2,/X,X, distributed as Student’s
t with n d.f., independently of X;+ X2.
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2.5  Limiting Form of t-distribution:. As n— «», the p.d.f. of t-distribution

with n d.f viz.,
—-(n+1)
B 1 e 1 1. —o<t<
ot t) ()
2'2
Proof lim— L _jim_L _Tn+1/2]
n%\/ﬁB(l n) e n T(n/2)I'(1/2)
2'2

Since  T(W/2)=+n and lim LR o

So that

-1 -1
1 ey ] t?)2
limf (t)= lim ————. lim || 1+ — lim|1+—
n—s o n—o \/n_B(l nj n—o n n—o n
22

= Lexp(—ltzj —o<t<wm
\2r 2 )

Hence for large d.f. t-distribution tends to standard normal distribution.

2.6 Graph of t-distribution. The p.d.f. of t-distribution with n d.f is:

(2 -(n+1)/2
f(t):C(1+_] —o<t <o
n
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- 1n
nB|l—,—
a5l 3)
Since f(-t)=f(t), the probability curve is symmetrical about the line t = 0.
As t increases, f(t) decreases rapidly and tends to zero ast — «, S0 that t-axis is an
asymptote to the curve. We have shown that

n , _3n-2)
— n>2, Bz—(n_4)y

U =

Hence for n> 2, u,>1 i.e., the variance of t-distribution is greater than that
of standard normal distribution and for n > 4, p,> 3 and thus t-distribution is

more flat on the top than the normal curve. In fact, for small n, we have

Plt]2to]2P] Z |2t,] Z~N(0)D

Normal curve

n=7

n=3

i} 1 il 1 1 I > t
-4 -3 -2 -1 t=0  +1 +2 +3 +4

i.e., the tails of the t-distribution have a greater probability (area) than the
tails of standard normal distribution.

Critical Values of t. The critical (or significant) values of t at level of
significance « and d.f vfor two-tailed test are given by the equation

PUt |>tv(a)]=a = PUt|StV(a)]=l—a
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Rejection Ré'ecﬁon
region (0/2) l

region (o/2)

Acceptance
region (1~o1)

~t, t=0 3

Since t-distribution is symmetric about t = 0,50 we have

Pt >t,(a)]+P[t <-t,(a)]= = 2P[t>t, ()=«

= Plt>t,(a)]=a/2

Therefore Pt > t, (2a))]=

t,(20) (from the Tables) gives the significant value of t for a single-tail

test [Right-tail or Left-tail-since the distribution is symmetrical], at level of
significance o and v d.f. Hence the significant values of t at level of significance
a. "for a single-tailed test can be obtained from those of two-tailed test by looking

the values at level of significance 2o .
For example,

tg(0.05) for single-tail test = tg (0.10) for two-tail test = 1.86

2.7  APPLICATIONS OF t-DISTRIBUTION

The t-distribution has a wide number of applications in Statistics, some of

which are enumerated below.

() To test if the sample mean (x) differs significantly from the

hypothetical value p of the population mean

(ii) To test the significance of the difference between two sample means.
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(iii) To test the significance of an observed sample correlation coefficient

and sample regression coefficient.

(iv) To test the significance of observed partial correlation coefficient.

EXERCISES

EXERCISE NO :-1 Show that for t-distribution with n d.f., mean deviation

about mean is given by

InT[(n-1/2]/rTn/2

Solution. We know that E(t) = 0.

M D.(aboutmean)=[" |t|f (t)dt

29

1 T It
= J. (n+1) dt
\/n_B( gj - (1+t2j
n
2 ® t
dt
\/n_B( j g( tzj(nﬂ)
1+ —
n
__n [ by substituting
85 5]y
N yi-t \/ﬁ B[n -1 1}
i B(; rzlj DLy Ve B(l,n} 2



AN Tn -1/2)]
~ Jnr(n/2)

EXERCISE No:-2 select the correct answer

Student’s t-test is applicable when (a) a sample size is large, (b) a sample

size is less

2.9

than five, (c) a sample size is less than thirty but greater than five.

EXERCISE No:-3 Check whether the following statement is correct:

(@) t-value lies between —ooand +oo .

EXERCISE No 4.. Find the values for the following with the help of tables
(@) tis when o =0.05 for two tailed test

(b) t;2 when a.=0.02 for single tailed test

()t  when a=0.01 for two tailed test

() tio  when o=0.05 for single tailed test

(e) tis when o =0.01 for single tailed test

Self assessment questions

1. What is Student’s t distribution? When is it used to construct a

confidence interval estimate of the population mean?

2. Explain the importance of t distribution as distribution as sampling

distributions?
3. Describe the constants of student-t distribution

3. In what situation t distribution tends to normal distribution derive this
result mathematically.
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. State the assumptions underlying Student’s t-test when applied to both
single and two-sample problems.

Define the student’s t-test. What kind of hypotheses can be tested by
the t-test.

. Obtain formulae for 95% confidence limits of the mean of a normal

population, when the mean is (i) known, (ii) unknown.

. Obtain the formulae for 95% C.I for mean of normal population when

the mean is (i) Known (ii) Unknown

31



Unit 1 Lesson 3

DISTRIBUTION AND ITS PROPERTIES

Structure:

3.1  Introduction

3.2 Objectives

3.3  Concept of F distribution and its derivation
3.4  Constants of F-distribution

3.5  Mode and Points of Inflexion of F-distribution
3.6 Applications of F-distribution

3.7 Relation between t and F distributions

3.8  Shape of f distribution

3.9  Exercises

3.10  Self assessment question

3.1 INTRODUCTION

This distribution was discovered by G.W.Snedecor and named in the
honour of the Distinguish mathematical statistician Sir R.A Fisher. It may be
recalled that the t statistic is used for testing whether two population means are
equal. Whenever we are required to test for the case of more than two means, this
can be tested by comparing the sample variances using F distribution by the use of
analysis of variance technique which consist of “separation of variation due to a
group of causes from the variation due to other groups”.

F ratio is basically ratio of between column variance and between column

variance, having found F ratio we can interpret it First, examine the denominator.,
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which is based on the variance within the samples. The denominator is a good

estimator of o2 (the population variance) whether the null hypothesis is true or

not. What about the numerator? If the null hypothesis is true, then the numerator,

or the variation among the sample means, is also a good estimate of o? (the
population variance). As a result, the denominator and numerator should be about
equal if the null hypothesis is true. The nearer the F ratio comes to 1, then the
more we are inclined to accept the null hypothesis Conversely, as the F ratio
becomes larger, we will be more inclined to reject the null hypothesis and accept
the alternative (that a difference does exist in the effects of the three training
methods).

In short ,when populations are not the same, the between-column variance
(which was derived from the variance among the sample means) tends to be larger
than the within-column variance (which was derived from the variances within the
samples), and the value of F tends to be large. This leads us to reject the null
hypothesis.

Summing up, F- distribution is a very popular and useful distribution
because of its utility in testing of hypothesis about the equality of several
population means, two population variances and several regression coefficients in
multiple regression etc. As a matter of fact, F-test is the backbone of analysis of

variance.

In fact this sampling distribution is widely used in different ways while
testing different null hypotheses about a variety of population parameters.

3.2 OBJECTIVES

The objectives of this lesson is

33



. To introduce the F distribution and learn how to use them in

statistical inferences

. To recognize situations requiring the comparison of more than two

means or proportions

. To compare more than two population means using analysis of
variance

. To use the F distribution to test hypotheses about two population
variances

3.3 CONCEPT OF F DISTRIBUTION AND ITS DERIVATION

F-distribution: If X and Y are chi-square variates with v,and v, degrees

of freedom respectively, then F-statistic is defined by

E— X /vy
Y /v,

Hence, F is defined as the ratio of two independent chi-square variates
divided by their respective degrees of freedom and it follows Snedecor’s F-
distribution with (v,,v,) d.f. denoted by F ~ F (v,,v,) with probability function
given by:

oS

Y1
2

f(F):w —F 0<F <o

B Vi Vo i, ve
I 2
22 [1+L1F]

Va2

ol

Derivation of Snedecor’s F-distribution: Since X and Y are independent

chi-square variates with v,and v, d.f. respectively, their joint probability density

function is given by:
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Vi

f(x,y)= vl;exp(—xm)x? X
2 2 F(V1/2)

ey 2y 7
2 2 F(V2/2)

Vig Ve
(vi+vy) ' expl-(x+y)/2)jx 2 'y 2,
2 2 T(v/2)[(v,12)

0<(X,y) <

Let us transform the variables as given below

F=XYL andu=y sothat 0<F <o, 0<U<oo
Y/v,

A%
x=—LFu and y=u
Vo

Jacobian of transformation is given by

v
J= 6(X,Y) _ Zu 0 vy u
(Fu) |

So that joint p.d.f of the transformed variables is

-1

Y2 g
9(F. W)=~ ! exp{—g(uﬁFJ}x(ﬁFuJ uz2 |J|
WitV,) 2 Vs Vs
2 2 T(vI2)T(v,/2)

g(F'U)z (V1+V2) (V1/VZ) eXp _%[1+\\:_2FJ}XU(V1+V2/2)>1(F)2_ ’
2 2 [(v;/2)[(vy/2)

0<F <o, 0<U<w

b

Integrating w.r. to u over the range 0 to«, the p.d.f. of F becomes
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(vi+vy) Vs
2 2 T(v/2)T(v,/2)

9.(F) = (vi /v, )P (F )<v1/z>-l {Igoexp{_%[HﬁlzJ}Xu((vlm)/z%ldu}

(vy /v, /D (F )“1/2“ T(v, +vy/2)

(vitvy)

(vy+v,)12
2 2 T(vi/2)T(v,12) {;(1+\/1Fﬂ

Vo

v (vy/2)1
(Vl/VZ)( 1/2) (F) 0<F <

X 1

Bl YL V2 (1+V—1F](v1+v2)/2
22 Ve

which is the required probability function of F-distribution with (v;,v,)

g:(F) =

d.f

Alternative Proof of F-distribution: If X and Y are chi-square variates

with v;and v, degrees of freedom respectively, then F-statistic is defined by

Fo XM g0 that YLF =é being the ratio of two independent chi-square

Y/va \Z,

variates with

viand v, degrees of freedom respectively is a Bz(v?l,%)variate. Hence

the probability function of F is given by

(vy/2)-1

;i
dp(F)= —1 V2 V—lFJ

d(
B[Vl sz [1+V—1Fj(vl+v2)/2 Vo
" v,

, 0<F <o

2)-1
V](VI/) (vy/2)-1
_\V2 . (F)
B ﬁ,viz [1+V—1F](vl+v2)/2
2 2 Ve
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3.4 Constants of F-distribution:

u, (about origin )=E[F"]=["F"f(F)dF

v 1 (vq/2)1
:(Vl/VZ)( 1/2)1j|:r (F) dF

B Vi Vo 0 [1+V—1F](v1+v2)/2
22 Ve

Put ﬁp =y so that dF =V—2Fu o<u<w
\2) Vi

r+(vy /2)-1

' (\’1/\’2)(v1/2)0C V2 Vi
By = I (1+ )(v1+v2)/2 - dy
B[Vl,vz) 0 Y L ve
2 2

yr +(v,/2)-1

dy
B(Vl \;Zj £(1+y)(V1/2)+r+l(Vz/2)_rJ

In particular for r =1, we have

B(1+V1,V2—1)
R4 2 2
,Ulz(_]
v, B ViVvy
22

:( v j T+ (v/2)]r(v,/2) -1/ Ty, /2,v, /2]
V, F[(vl/Z)]F[(vz/Z)]/F[Z]
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z(v_lJr[u(vl/z)]r[(vZ/z)—ll v s
Vo F[(v1/2)]F[(v2/2)] 2
. _ Tul'v
Since B(u,v)= )
:(ﬁj [0y2Tl0y/ 2 Tl /- _ v,
Vs F[(Vl/Z)][(VZ/Z)—l]F[(VZ/Z)—].] v,=2 e
AsTr=(r-)Ir'(r-1)
- [ Vi T rl(v;/2) + 2] T[(v,/2) - 2]
? Vo T[(v1/2)]C[(v,/2)]
:[v_lf rlv/2+ vy - viw+2) o,
vy ) [(vo/2)-1Irl(vy/2) - 2] vi(vy - 2)(v, -4) °
H2=H|2—H|12= v%(v1+2) B v% 3 2v§(v1+v2—2) vos4

Vi(vo=2)(va—4) (v3-2)2 vi(vo-2)2(vy—4)

Similarly, on putting r =3 and 4 in p, we get u, and p, respectively

3.5 MODE AND POINTS OF INFLEXION OF F-DISTRIBUTION.

We have

<
NI

f(F):B[VV%

(

P
F 2

7"72] '

22 [1+"71|:J

Vo

0<F <w

vi,v2
2 2
oiuu

Taking log both sides we get
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log £ (F)=C + {(v,/2) ~1}log F —[W*Tvzjuog(lﬂ_lpj

Vs

C is a constant independent of F.

5 1 (v, +v, 1 Vi
a—F[Iog(F)]= {(Vllz) _l}F_( 2 j( 1% j.vz
1+-LF
Va

N vi-2 vty
f(F)"arf(F)ho T OTF T el

Solving for F we get

_ Va(vi—2)
vi(vy +2)

It can be easily verified that at this point f "(F) <O0.

Hence Mode = Y2("1=2)
vi(vy +2)

Since F> 0, mode exists if and only if v, >2.

Mode=|_V2 | Y2-2
Vo +2 V4

Hence mode of F-distribution is always less than unity.
Hence Karl Pearson’s coefficient of skewness for F distribution is given by

Mean —mode S
o

0

since mean> 1 and mode < 1. hence F-distribution is highly positively

skewed.
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3.6  APPLICATIONS OF F-DISTRIBUTION

F- distribution is a very popular and useful distribution because of its
utility in testing of hypothesis about the equality of several population means, two
population variances and several regression coefficients in multiple regression etc.

As a matter of fact, F-test is the backbone of analysis of variance.

In fact this sampling distribution is widely used in different ways while
testing different null hypotheses about a variety of population parameters.

F-test for Equality of Two Population Variances. Suppose we want to

test (i) whether two independent samples x;, (i =1, 2 n;) and y;, (I =1, 2
nz) have been drawn from the normal populations with the same variance o’ (say),
or (ii) whether the two independent estimates of the population variance are

homogeneous or not.

Under the null hypothesis (Ho) that (i) o =03 =7, i.e., the population variances

are equal, or (ii) Two independent estimates of the population variance are
homogeneous, the

statistic F is given by

£ _Sx
2
Sy
2 1 & 2 2 1 & T2
Where sZ = > (x-x)° and sy = 2 j-Y)
nl—li_l n, _1j:1

are unbiased estimates of the common population variance o obtained
from two independent samples and it follows Snedecor’s F-distribution with (vi,

V) d,f. where v; =n; —1and v, =n,-1.
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By comparing the calculated value of F obtained by using above formula
for the two given samples, with the tabulated value of F for (n;,ny) d.f. at certain
level of significance (5% or 1%), Hy is either rejected or accepted.

e F-test for Testing the Significance of an Observed Multiple
Correlation Coefficient:. If R is the observed multiple correlation coefficient of a
variate with k other variates in a random sample of size n from a (k+1) variate
population, then Prof. R.A. Fisher proved that under the null hypothesis (Ho) that
the multiple correlation coefficient in the population is zero, the statistic:

follows F distribution with (k,n-k-1) d.f

e F-test for Testing the Significance of an Observed Sample:

Correlation Ratio nyy . Under the null hypothesis that population correlation—

ratio is zero, the test statistic is

F = 0 - F(h-1N -h)

where N s the size of the sample (from a bi-variate normal population)
arranged in h arrays

e F-test for Testing the Linearity of Regression: For a sample of size
N arranged in h arrays, from a bi-variate normal population, the test statistic for
testing the hypothesis of linearity of regression is
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2 2
p_nioroN-h o F(h-2N -h)
h-2

e F-test for Equality of Several Means: This test is carried out by the
technique of Analysis of Variance, which plays a very important and fundamental
role in Design of Experiments in Agricultural Statistics.

3.7 RELATION BETWEEN t AND F DISTRIBUTIONS

In F-distribution with (v,,v,) d.f. , take v;=1, v, =v and t* = F, i.e.,dF
= 2tdt.

Thus the probability differential of F transforms to

1
doy- WV ) 1 otdt

, 0<t’<w
NER e
2 2)|1+—
v
1/2
= (1/V)1 -y 1(V+1ydt —0o<t<ow
Bl -, -
W (2 2) [1+J
v

the factor 2 disappearing since the total probability in the range (—o0,+x)

is unity. This is the probability function of Student’s t-distribution with v d.f.
Hence we have the following relation between t and F distributions.

If a statistic t follows Student’s t distribution with n d.f., then t* follows
Snedecor’s F-distribution with (1, n) d.f. Symbolically,

. 2
if t "’t(n) then t ~F(1,n)

42



3.8 SHAPE OF F DISTRIBUTION

As we can see in the below given figure, the F distribution has a single
mode. The specific shape of an F distribution depends on the number of degrees
of freedom in both the numerator and the denominator of the F ratio. But, in
general, the F distribution is skewed to the right and tends to become more
symmetrical as the numbers of degrees of freedom in the numerator and

denominator increase.

{25,25) degrees of freedom
/

(5,5) degrees of freedom

R ~.
r 4 .
[} A
",«. it ~-\ (2,1) degrees of freedom
o
7 (1 - ~o /
r s -~ - E
7 T ~s
z 1 . -~ e
r ¥ i - S
Y2 J ‘\ o
¥ “~. -

[}
’ - S e
Y ~

’
w"

Here we see that the probability p(F) increases steadily at first until it
reaches (corresponding to the modal value which is less than 1) and then slowly so

as to become tangential at F=oo, i.e., F-axis is an asymptote right tail.

3.9 EXERCISES

1. Establish relationship between t and F distribution
2. Write “Yes’ if the statements given below are correct, otherwise
write ‘No’

@ Degrees of freedom take care of the sample size in a decision

problem about a hypothesis.

(b) Randomized test also involves some statistic.
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(©)
(d)
(€)
(M
(9)

(a)
(b)
(©)

Each statistic has some distribution.

Standard deviation of an estimate and standard error are the same.
t-value lies between 0 and « .

Z-value lies between O and 1

Variance of a sample can be any value between — oo and + o

3. Find the values for the following with the help of tables

Fziy when =0.05

F10.12) when ¢ =0.02

Fse)  when level of significance is 5%

Mention important uses of F distribution.

Prove that if X has the F-distribution with (m, n) if. and Y has F-

distribution with (n, m) d.f., then for every a > 0,

P (X sa)+P{Y 31}1
a

If F(n;, ny) represent an F-variate with n; and n, degrees of
freedom, prove that F(ny, ny) is distributed as 1/F (ny, ny) variate.
Deduce that.

P[F (n,n,)>D]= F{F (N,.0,) s%}

Or

Show that probability points of F(n,,n,;)can be obtained from

those of F(n,n,)
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7. Derive the distribution of F =S2/S2, where S2 and S2 are two
independent unbiased estimates of the common population

variance o2, defined by

2
o
S2
1 & 1 &
Where SZ= 3 (x; -X)? and SZ = > (g —X)?
n-1i3 -1
8. If X1, X2, X3ueennnen Xm,Xm + 1 are independent normal variates with

zero mean and standard deviation o, obtain the distribution of

m m-+n
YXE ) Y xE
i=1 i=m+1
9. Check whether the moment generating function of F distribution

exists or not

10.  Why larger of the two variances is taken as numerator while
computing F statistic ?

11 State the assumptions underlying Snedecor’s F-test when applied to
both single and two-sample problems.

12 Obtain formulae for 95% confidence limits of the variance of a

normal population, when the mean is (i) known, (ii) unknown.

13 Show that the probability curve of the distribution of F is positively
skewed.

14 If X has an F distribution with n; and n, d.f., what will be the
distribution of 1/X and how this result can be used ?

15 If X is t-distributed, show that X is F-distributed.
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Unit 2 Lesson 4

THEORY OF ESTIMATION

Structure:

4.1 Introduction

4.2 Objectives

4.3 Concept of Statistic and Parameter
4.4 Theory of estimation

4.5 Criterion for good estimator

4.6 Unbiasedness

4.7 Exercises

4.8 Self assessment questions

4.1 INTRODUCTION:

Whenever we take a sample, we do so with an idea of learning. something
about the population from which the sample is drawn. In statistical terminology,
this learning is termed as statistical inference which is of two kinds; estimator and
hypothesis testing.

Everyone makes estimates. When you are ready to cross a street, you
estimate the speed any car that is approaching, the distance between you and that
car, and your own. Having made these quick estimates, you decide whether to
wait, walk, or run. All managers must make quick estimates too. The outcome of
these estimates can effect their organizations as seriously as the outcome of your
decision as to whether to cross the street. University department heads make

estimates of next year’s enrollment in statistics, Credit managers estimate whether
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a purchaser will eventually pay his bills. . All, these people make estimates
without worry about whether they are scientific but with the hope that the
estimates bear a reasonable resemblance to the outcome. Here we can make two
types of estimates about a population: a point estimate and an interval estimate.
A point estimate is a single number that is used to estimate an unknown
population parameter. An interval estimate is a range of values used to estimate a
population parameter. It indicates the error in two ways: by the extent of its range
and by the probability of the true population parameter lying within that range. In
this whole process sampling and theory of probability plays a vital role.

The object of sampling is to study the features of the population on the
basis of sample observations. A carefully selection sample is expected to reveal
these features, and hence we shall infer about the population from a statistical
analysis of the sample. This process is known as Statistical Inference.

There are two types of problems. Firstly, we may have no information at
all about some characteristics of the population, especially the values of the
parameters involved in the distribution, and it is required to obtain estimates of
these parameters. This is the problem of estimation. Secondly, some information
or hypothetical values of the parameters may be available, and it is required to test
how far the hypothesis is tenable in the light of the information provided by the
sample. This is the problem of Test of Hypothesis or Test of Significance.

4.2  Objectives
On careful reading of this lesson learner will be able
. To have the basic knowledge of theory of estimation and

. To learn how to estimate certain characteristics of a population

from samples
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. To learn the strengths and shortcomings of point estimates and

interval estimates
. To calculate how accurate our estimates really are

. To calculate the sample size required for any desired level of

precision in estimation

4.3  Concept of Statistic and Parameter, estimate and estimator

Solution: Any statistical measure calculated on the basis of sample
observations is called a Statistic; e.g., sample mean, sample standard deviation.,
the proportion of defectives observed in the sample, etc. Any statistical measure
based on all units in the population is called a Parameter; e.g., population mean,
population standard deviation, proportion of defectives in the whole lot, etc. The
value of a statistic varies from sample to sample; but the parameter remains a
constant. Usually parameters are unknown and statistics are used as estimates of
parameters. The probability distribution of a statistic is called its ‘sampling
distribution” and the standard deviation in the sampling distribution is called
‘standard error’ of the statistic. However, since the parameter is constant it has

neither a sampling distribution nor a standard error.

The following notations will be used to distinguish between statistic and

parameter:
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Statistic (from Sample Parameter (from all
Values) Population Values)
Mean X i
Standard Deviation S ! o
Proportion P 3
rth Raw Moment m! U
rth Central Moment m, A

Any sample statistic that is used to estimate a population parameter is
called an estimator; that is, an estimator is a sample statistic used to estimate a
population parameter. The sample mean X can be an estimator of the population

mean p, and the sample proportion p can be used as an estimator of the

population proportion P. We can also use the sample range as an estimator of the

population range.

When we have observed a specific numerical value of our estimator, we
call that value an estimate. In other words, an estimate is a specific observed
value of a statistic. We form an estimate by taking a sample and computing the
value taken by our estimator in that sample. Suppose that we calculate the mean
odometer reading (mileage) from a sample of used taxis and find it to be 98,000
miles. If we use this specific value to estimate the mileage for a whole fleet of
used taxis, the value 98,000 miles would be an estimate populations, population

parameters, estimators, and estimates.

44 THEORY OF ESTIMATION

Whenever we take a sample, with the aim of having idea about the
population from which the sample is drawn. In statistical terminology, this
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learning is termed as statistical inference which is of two kinds; estimator and
hypothesis testing. Both types of statistical inference utilise the information
provided by the sample, for drawing some conclusions about the parameters of the
population; yet each type of inference uses this information in different ways. The
information by the sample is given by sample.

Suppose we have a random sample xi, Xz, ...X, on a variable x, whose
distribution in the population involves an unknown parametero. It is required to
find an estimate of 6 on the basis of sample values. The theory of estimation is
divided into two parts: point estimation and interval estimation. The theory of

estimation is divided into two parts: point estimation and interval estimation.

The aim of point estimation is obtain a single value which is the best guess
of the parameter interest. In interval estimation the object is to obtain interval
within which the true value of the parameter may -be said to lie with some given
level of probability which expresses the confidence we have that the value lies

within the stipulated range.

(i) Point Estimation, and
(if) Interval Estimation.

In point estimation the estimated value is given by a single quantity,
which is a function of sample observations (i.e. statistic). This function is called
the estimator of the parameter, and the value of the estimator in a particular

sample is called an ‘estimate’.

In short point estimate is a single number that is used to estimate an

unknown population parameter.
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For example, a department head would make a point estimate if she said,
“Our current data indicate that this course will have 350 students in the next
class.”

A point estimate is often insufficient, because it is either right or wrong. If
you are told only that his point estimate of enrollment is wrong, you do not know
how wrong it is, and you cannot be certain of the estimate’s reliability. If you
learn that it is off by only 10 students, you would accept 350 students as a good
estimate of future enrollment. But if the estimate is off by 90 students, you would
reject it as an estimate of future enrollment. Therefore, a point estimate is much
more useful if it is accompanied by an estimate of the error that might be

involved.

An interval estimate is a range of values used to estimate a population
parameter. It indicates the error in two ways: by the extent of its range and by the
probability of the true population parameter lying within that range. In this case,
the department head would say something like, “I estimate that the true enrollment
in this course in the fall will be between 320 and 370 and that it is very likely that
the exact enrollment will fall within this interval.” he has a better idea of the
reliability of her estimate. If the course is taught in sections of about 100 students
each, and if he had tentatively scheduled five sections, then on the basis of his

estimate, he can now cancel one of those sections and offer an elective instead.

Summing up we can say that in interval estimation, an interval within
which the parameter is expected to lie is given by using two quantities based on
sample values. This is known as Confidence interval, and the two quantities
which are used to specify the interval, are known as Confidence Limits.

45 POINT ESTIMATION—CRITERIA FOR GOOD ESTIMATORS

The theory of estimation is divided into two parts: point estimation and

interval estimation. The aim of point estimation is obtain a single value which is
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the best guess of the parameter of interest. In interval estimation the object is to
obtain interval within which the true value of the parameter may -be said to lie
with some given level of probability which expresses the confidence we have that

the value lies within the stipulated range.

There are various methods with which we may obtain point estimation or
point estimates of the parameters of the phenomena under study. There is
naturally a problem of choosing the one which gives us the best estimate. Also,
how are we to decide whether any estimate is the best or whether it is good or
better than another obtained by a different method? That is; we need to devise a
criterion to call an estimator a best one. We, therefore, have to do two things: (a)
to specify various properties of an estimator that go to make it a best estimator
and, (b) to devise different methods that could give rise to estimators that possess

at least some of these desirable properties.

Assume some random variable X whose distribution is characterized by a
specific parameter, 0, which we want to estimate. Thus the parent population

consists of all possible values of X and 6 is one of the parametric characteristics

of this population. An estimator of 6 is denoted by ©and since it is obtained by

substituting the sample observations of X into a formula, we write

which is read as “© is a function of Xg, Xy ,....... X,

Since the accuracy of an estimator, in general, increases with the number
of observations in the sample data, the desirable properties of the estimators are

divided into two groups depending upon the size of sample.

Finite sample or small sample properties refer to properties of the
sampling distribution of an estimator based on any fixed sample size. On the other

hand asymptotic or large sample properties are the properties of the sampling
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distribution of the estimator which is obtained from a sample whose size

approaches infinity

Many functions of sample observations may be proposed as estimators of
the same parameter. For example, either the mean or median or mode of the

sample values may be used to estimate the parameter p of the Normal distribution

with p.d.f.

1 e—(x—,u)Z/ZU

oAN2r

Naturally we have to choose one among these estimators on the basis of
certain criteria. The desirable properties or the main criteria for a good estimator
obtained from small samples according to R.A. Fisher are

(i) Unbiasedness,
(i) Consistency,
(iii) Efficiency,

(iv) Sufficiency.

4.6 Unbiasedness:

A statistic t is said to be an Unbiased Estimator of a parameter@, if the

expected value of t is.
E(t)=6

Otherwise, the estimator is said to be “biased’. The bias of an estimator is
defined as the difference between its expected value and the true value of the
parameter. Mathematically, the bias of a statistic in estimating o is given as

Bias= E(t) — 6
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If E(t)— 6>0 tissaid to be positively biased.
E(t) — 6 <0 tissaid to be negatively biased

When the bias is positive, that is, when the mean value of the distribution
is larger than its parameter, then the estimator is said to be upward biased.
Conversely, when the bias is negative, the estimator is biased downwards.

?‘(e‘)r
£6) -8
0 True @
8 is an unbiased estimator of @
{6}

Bias .

. _ 7§
0 ) e

815 a biased estimator of ©

Since the distribution is assumed to be a symmetric one, the mean is
shown at the centre of the distribution, and it is equal to the true value of the
parameter in Figure on the left hand side; but is not equal to the true value of the
parameter in Figure on the left hand side

Remark: A concept related to bias is sampling error
Sampling error = 0-06

That is, sampling error is simply the difference between the value of
estimator and the true value of the parameter to be estimated
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Illustration of unbiased estimator

Let us consider the number set P = {2,4,6}.If we consider P as a
population, then

Population Mean = u = (2+4+6)/3 = 4.

Variance = o2 = [(2-4)® + (4-4)® + (6-4)?]/3 = 8/3 = 2.666667.
Standard deviation = sqrt(s?) = sqrt(8/3) = 1.632993.

If P is a sample, then

Sample mean = X = (2+4+6)/2 = 4.

Unbiased estimate of variance of sample mean is

s2 = [(2-4)2 + (4-4)2 + (6-4)2]/2 = 8/2 = 4.

Sample standard deviation = \/s_2 =J4=2

{ The formula for s? involves dividing by n-1. In this case, n=3. Hence n-1
=2}

Now, let's consider P to be a population and draw all possible samples of
size 2 chosen from P, with replacement. There would be 3x3 = 9 samples.

Sample | X For 52 s for S? for S for
sample for sample sample sample sample
2,2 2 0 0 0 0
2,4 3 2 1.414214 1 1
2,6 4 8 2.828427 4 2
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42 3 2 1.414214 1 1
44 4 0 0 0 0
4,6 5 2 1.414214 1 1
6,2 4 8 2.828427 4 2
6,4 5 2 1.414214 1 1
6,6 6 0 0 0 0

Column 4 2.666667 | 1.257079 | 1.333333 | 0.888889

Means

To summarize, we have listed all samples of size 2 (with replacement)
from a population P of size 3. We have calculated statistics for each sample of size
2. Here is an important definition:

A statistic used to estimate a population parameter is unbiased if the mean
of the sampling distribution of the statistic is equal to the true value of the
parameter being estimated.

The mean of the sample means (4) is equal to u, the mean of the
population P. This illustrates that a sample mean X is an unbiased statistic. It
is sometimes stated that X is an unbiased estimator for the population parameter
J7

The mean of the sample values of s2 (2.666667) is equal to o2 |, the

variance of the population P. This illustrates that the sample variance s* is an

unbiased statistic. It is sometimes stated that s? is an unbiased estimator for the

population variance o?.
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Here we see that the sample statistic s is not an unbiased statistic. That is,
the mean of the s column in the table (1.257079) is not equal to the population
parameter ¢ = 1.632993.

Also, if we use the S? formula for samples, the resulting statistics are not
unbiased estimates for a population parameter. Note that the means for the last
two columns in the table are not equal to population parameters.

In summary, the sample statistics Xand s* are unbiased estimators for the

population mean u and population variance c?, respectively.

47 EXERCISES
Exercise:1 If X3, Xp, ...Xn IS @ random sample from an infinite population

. . _ n . 10
with variance &%, and X :%in is the sample mean, show that =3 (x; — X)?
i=1 Nz

is a biased estimator of &2 but the bias becomes negligible for large n. Give an

unbiased estimator of o2 here.
Solution:- Let x# and o® be the mean and variance of the population.
Then E(x;)) = u. And Var (x) = E(xi-u) °> = o2for eachi =1, 2, .. n. The

variance of the sample is
2 19 2 2 2
S ==>(X;—X)° We have to show that E(S°)# o
Niz

S22 w2
1n 2 X 2Yi

Now, S*==3(x;-X)?=4L == where y, =x;-p
Niz n-X n-y
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(- S.D is unaffected by change of origin)
10 -
==> (X —w)? - (X-p)°
Niz

1[n Yo’
E[szlzﬁ[gE(xi —u)z}—E(Y—u) = 5 v

202 n-1, 2

n
This show that S° =£Z(xi —X)? is a biased estimator of 2
Nia

Thus for large n bias will be negligibly small if we write

2_ 1 & v
MR P

We see that

s2 =" g2 5o that E[s?] = ——E[S?]
n-1 n-1

n n-1
LA P S
n-1 n

This shows that s? is unbiased estimator of &2

Note : the distinction between S? and s? in which only the denominators
are different.S? is the variance of the sample observations, but s* is the ‘unbiased

estimator” of the variance (o ?) in the population.

Exercise:2 Show that the sample mean based on a simple random sample

with replacement (srswr) is an unbiased estimator of the population mean.
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Solution:- Suppose we have a sample X1, Xz, ...X, obtained by using simple
random sampling with replacement obtained from a finite population of size N

We have to show that E[x]= u

In SRSWR any of the population members Xi, X, ... Xn may appear at
the i-th drawing, i.e. x is a random variable with the following probability

distribution:
Xi X1 Xo | XN Tot
al
Pro 1/N 1/N 1/N 1
b

N N N
= (X1+X2+ ........... ,+XN)/N - u
— 1
Hence E(X)= E[—(x1 +X, + xn)} =
n

=Cp+p+..+p)/n=np/n=np

This shows that X is an unbiased estimator of u

[Note: This result holds in all cases of random sampling, irrespective of
whether the sample is drawn ‘with replacement’ or ‘without replacement’ from a

finite population or from an infinite population.]
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Exercise:3 If Xi, X2, ...Xn is a random sample from N (x,1) show that t

_ 10 . . .
= X ==Y'x? isan unbiased estimate of u?+1
Niz

Sol: We are given E[x;]1=x and v(x;) =1; i=12,..n

Now E[x?]=v(xi)+E[x;]* =1+p?

E[t]:%E[xf]:%i[l+pz]:[l+p2] hence t =X =

i=1

S|+

n 2 )

> Xi IS an
i=1

unbiased estimate of p? +1

2% (X% -1) ,
Exercise:4 Show that ‘=L D is an unbiased estimate of 6“ for
n(n-

the sample values xi, X2, ...X,  drawn on X which takes the values 0 and 1 with

respective probabilities © and (1-0)

Sol: Since X3, X2, ...Xn is a random sample from Bernoullian population so
that

T=Yx, ~B(n,p) sothat E[t]=n0 and var (T)=n0(1-0)
i=1

ixi(Z Xi —1)
£l = —{T(T‘”}: BT T]= L [E(T?) - E(T)]
n(n-1) nn-1)| n(n-1 nn-1)

_ 1 2
= n(n—l)[V(T)+E(T) —E(M)]
1 202 _nn-10*
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4.8

Hence proved

SELF ASSESSMENT QUESTIONS

1.

Show that the sample mean (X)is an unbiased estimator of the

population mean( )

E[x]=u

Prove that the sample variance S is a biased estimator of the

population variance o? because

Hint: {E[SZ]: n-l,2, 02}
n

An unbiased estimator of the population variance o2 is given by
2 1 2 2
= =3 (%~ X)
(n —1) i=1 !

Point out the distinction between s? and S?

Let X be distributed in Poisson form with parameter 0 show that only
unbiased estimate of exp {—(k +1)8}, k>0 is T(x)=[-k]* so that T(x)> if

x is even and T(x)<0 if x is odd.
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Unit 2 Lesson 5

THEORY OF ESTIMATION

Structure:

5.1  Introduction

5.2  Objectives

5.3  Concept of Consistency, efficiency
5.4  Sufficiency

55  Exercises

5.6  Self assessment questions

5.1 INTRODUCTION

A given sample statistic is not always the best estimator of its analogous
population parameter. If we consider a symmetrically distributed population in
which the values of the median and the mean coincide. In this case, the sample
mean would be an unbiased estimator of population median. Also, the sample
mean would be a consistent estimator of the population median because, as the
sample size increases, the value of the sample mean would tend to come very
close to the population median. And the sample mean would be a more efficient
estimator of the population median than the sample median itself because in large
samples, the sample mean has a smaller standard error than the sample median. At
the same time, the sample median in a symmetrically distributed population would
be an unbiased and consistent estimator of the population mean but not the most
efficient estimator because in large samples, its standard error is larger than that of

the sample mean.

In short the main objective of present lesson is get a better idea to decide
among a class of unbiased estimator which one is best, consistency and efficiency
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(in addition to sufficiency) are the criterion on the basis of which question under
consideration can be addressed.

5.2 OBJECTIVES
After careful reading of this lesson learner will be able

e To have the basic knowledge about the concepts of consistency ,
sufficiency and efficiency

e To learn how to decide about certain characteristics of a population from
samples

e To calculate how accurate our estimates really are
e To have an understanding about the criterion of good estimator

e To decide about the best estimator

5.3 CONCEPT OF CONSISTENCY, EFFICIENCY
Consistency:

A statistic is a consistent estimator of a population parameter if as the
sample size increases; it becomes almost certain that the value of the statistic
comes very close to the value of the population parameter. If an estimator is
consistent, it becomes more reliable with large samples. Thus, if some one is
wondering whether to increase the sample size to get more information about a
population parameter, find out first whether your statistic is a consistent estimator.
If it is not, one will waste time and money by taking larger samples. A desirable
property of a good estimator is that its accuracy should increase when the sample
size becomes larger. That is, the estimator is expected to come closer to the

parameter as the size of the sample increases.
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A statistic t computed from a sample of n observations is said to be a
Consistent Estimator of a parameter o, if it converges in probability to 0 as n tends
to infinity. This means that the larger the sample size (n), the less is the chance
that the difference between t, and ¢ will exceed any fixed value. Given any

arbitrary small positive quantity e,

Lt P{|t,—6]>e}=0

n—oo

If E[t.,]—>6 and Var[t,] > 0 asn — oothent, will beaconsistent
estomatorof 6

To see whether an estimator is consistent, we should therefore examine its
bias and variance as sample size is increased. If both bias and variance decrease as

n becomes larger, and at the limit (as n — o ) both become zero, then estimator

is assumed to possess the property of consistency. This is illustrated in Figure
which is given below, which shows that as the sample size increases from 20 to
100 observations both bias of and its variance decrease.

£6)h

%) 7 @) 0

Since sum of squared bias and variance is equal to the MSE, the

disappearance of the bias and variance as n — oo is equivalent to the

disappearance of the MSE, so that we can also say;
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A statistic t is said to be a consistent estimator of a parameter, if
Lt MSE[t]=0

n—oo

For example, in sampling from a Normal population N (p,c?). both the

sample mean and the sample median are consistent estimators

Efficiency and Minimum Variance: Unbiasedness is a desirable property
but not particularly important by itself. It is because this property tells us nothing
about the dispersion of the distribution of the estimator. An estimator which is
unbiased, but one which has a large variance, will frequently lead to estimates that
are quite different from true value of the parameter. On the other hand an
estimator which has a very small variance but is biased, is equally (and even
more) less useful. In the light of this argument it seems desirable to examine the
variance of the distribution of the estimator also.

This criterion based upon the variances of the sampling distributions of the
estimators which enables us to choose between the estimators with the comm. on
property of consistency usually known as efficiency. Of two consistent estimators
for the same parameter, the statistic with the smaller sampling variance is said to
be “more efficient”. Thus if t and t” are both consistent estimators of ¢, and

Var(t) <Var(t')
then t is “more efficient’ than t” in estimating 0,

If a consistent estimator exists whose sampling variance is less than that of
any other consistent estimator, it is said to be “most efficient”; and it provides a
standard for the measurement of ‘efficiency’ of a statistic. If V, be the variance of
the most efficient estimator and V be the variance of any other estimator, then the

efficiency of the estimator is defined as
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Efficiency :ﬁ
\%

Obviously, the measure of efficiency cannot exceed 1.

In sampling from a Normal population N (u,o?), both the sample mean
and the sample median are consistent estimators of t, but
2 2

Var(X) = o Var(Median) = o
n 2N

Since Var (X ) is smaller than Var(median), mean is more efficient than
median in estimating the parameter n. It can be shown that the sample mean is the
most efficient estimator. Hence

2

(&)

Efficiency of median= n,2 :2:0.64 approx.
mo®
2n

Asymptotic efficiency
t is an asymptotically efficient estimator of 0, if
(a) tis consistent, and

(b) t has a smaller asymptotic variance as compared to any other
consistent estimator.

The establishment of the first condition does not pose any difficulty. To
establish whether consistent estimator satisfies the second condition is more

difficult. It is because the variance of any consistent estimator goes to zero as

n— o
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So in the present situation when we are comparing consistent estimators,
we choose the one whose variance goes faster to zero (asn — o) and call it

asymptotically more efficient.

For example consider two estimators t and t* whose distributions have the

following mean and variance;

Mean : E[t] = (nT_ll(a; E[t]= ( n: 1}9

2 2
(o)

Variance: Var(t)= —; Var (t*) = 2
n n

Both estimators are asymptotically unbiased and consistent; since their

bias and variance become zero as n — c and we can prove that

LimitE[t] = 6; LimitE[t*]=6;
N—oo NnN—o0

LimitVart] =0; LimitVar[t*]=0;
N—oo n—o

However, the variance of t goes faster to zero as n— o . Thus t is

asymptotically more efficient than the alternative consistent estimator t*.

Minimum Variance Unbiased Estimator (MVUE):If a statistic t =t(x,

X2, ...Xn) based on the sample of the size n is such that
(i) tis unbiased for ¢ forall & €©

(i) It has smallest variance among the class of all the unbiased

estimator of @
Then t is called as minimum variance unbiased estimate of o .

More precisely t is MVUE of 9 if
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E,(t)=0 forall 9 c® and

Var, (t) <Var,(t') for all & € ® where t’ is any other unbiased estimate of ¢

54 SUFFICIENCY

An estimator is sufficient if it makes so much use of the information in the
sample that no other estimator could extract from the sample additional

information about the population parameter being estimated.

A statistic is said to be a ‘sufficient estimator’ of a parameterg, if it
contains all information in the sample about ¢ If a statistic t exists such that the
joint distribution of the sample is expressible as the product of two factors, one of
which is the sampling distribution of t and contains 6, but the other factor is
independent of ¢, then t will be a sufficient estimator of ¢

Thus if X, X, ,eceeene. X, is a random sample from a population whose p.m.f
orp.d.fis

f (x.0) and tis sufficient statistic for the estimation of 6 ,we can write

f(x,.0), f(x,.0), T (X3.0)ecrneee .ot , T(x,.0)
=g (t.0), h(X;, X, X5ummeee ' X))

Where g(t.0),is the sampling distribution of t and contains only 6, but
(X, X5 Xgeeenee ,Xp,)is independent of®, since parameter 0 occurring in the

joint distribution of all the sample observations can be contained the distribution
of statistic t, it is said that t alone can provide all the information regarding 6,

therefore sufficient for 0
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Fisher-Neyman criterion: A statistic t =t(x;, Xz, ...Xn) is sufficient for
parameter if and only if the likelihood function( joint p.d.f of the sample) can be
expressed as o

L =TTF0x;,0) = 9(t,0) K(Xy, Xy %)

Where g(t,0) is the p.d.f of the statistic t and k(X;,X,,..X,)Is the

function of sample observations only, independent of 6

55 Exercises

Exercise:-1 Examine the desirable properties (Unbiasedness, consistency,
sufficiency and asymptotic properties ) in case of the following three estimators
which have been proposed to estimate true mean (pn) from a random sample of
observations on  Xi, Xp,......... Xn (It is assumed that parent population is
normally distributed.)

(M) ()==>1
- n _ZXI
W = n+1
X,
(iii) u*zépzz_n

Solution:- Unbiasedness:

: _ X, ] 1

M Ex)- EF—} Ly Ex]=u
n n

Hence Xis unbiased estimator of p
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(i) R LR ) PO R

n+1 n+1

Hence pis a biased estimator of u

>X,
(iii) E[u*] = E ﬁ+22_n ::%

L
5 ELX,]+ 5 S EIX]

_1 N n-1) (2n-1 S
2M 2n H 2n H=H

Hence p*is a biased estimator of p

Efficiency

Only X is to be examined for this property (. other two estimators are
biased)

2 2
Var (i)zc—and it can be shown that — is the minimum variance
n n

amongst the unbiased estimators of u. Thus X’ is an efficient estimator u
Asymptotic Properties:

Limit [X] = Limit [u] = u

n—oo n—oo

Hence Xis Asymptotically unbiased estimator of u

Nn—oo

(ii) LimitE[fi] = Limit(iju -
n—w n+1

Hence [1is Asymptotically unbiased estimator of p
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(iii) Limit E[u*] = Limit(ﬁju -
n—o n—w Zn
Hence p*is Asymptotically unbiased estimator of p
Consistency:
2 2
(i) Var (X)="- .. Limit>-=0
n

n—o n

X is consistent estimators.

2 2
.. ~ 1 1 1 2
1l Var[u]=Var| — D X, =| — Var(X;)=|——| no
() [l (n+1jzi: ' (n+1jzi: () (n+1)
Limit—— 62 =0
n»o (N+1)
Hence [ is consistent estimators.
X Xl 1)L
iii Var[pu*]=Var| =t +=2— |==Var(X,) +| — Var(X.
(i) ) =Var % 52 = Lvar() + 5| Svar(x)
2
_(n2+n] )
4an
2 2 2
|_imit(n 2”] o2 =220
n—oo 4n 4

Hence pn* is not a consistent estimators of .

Asymptotic efficiency:
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Only X and psatisfy the condition of consistency and thus needs to be

examined for this property. X is efficient even in case of small samples, hence it

is asymptotically efficient as well.
2 2 2
~ 1 2 n (o)
Var[p]=| — | nc"=| —— | —
[l ( n +1] (n + 1] n

In large samples (Ll}will be close to infinity; as such asymptotic
n+

2
variance of ﬁzc_; which is same as that of X.It follows, therefore, that n is
n

also asymptotically efficient.

Exercise:-2 If X, Xz, ...Xs is a random sample of size 5 from normal

population with mean x . Consider the following estimate of estimate of u

X, + X, +...+ X .. X, + X 2X, + X, + A X
172 > (i) t, = 22 xg (H) ty =2 3

() t= c > 3

Where A is such that t3 is unbiased estimate of x. Find 4, are t; and t;

unbiased, state giving reasons which is the best among t;, t; and ts.

Sol: Since sample is from normal population with mean. So that

E(x;)=u nd v(x;)=0c? and cov(xi, X))=0 ;i=1,2...n Now

5 5
(1) E(t)= %ZXi :%Zy = u It means that t; is unbiased estimate of u
i=1 i=1

() E()=  EX, +X;)+EX5) =2 (+ )+ 4 = 20

It means that t, is biased estimate of u
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(i) E(t3)= y:%E(2x1+x2+/1x3):y or E(2X,+X,+AXy)=3u oOr

2u+u+Au=3u=1=0

V(X)) +V(X,)+..+V(X5) _laz

Now Var(ti)= - =c

Var(tp)= M+V(X3) :gaz
Var(tp)= hd (Xl);V(XZ) +V(X3) = gaz

Since the variance of t; is minimum so t; is the best estimate of u

Exercise-3 Let Xi, X2, ...X, be a random sample from N (u,o?)find the

sufficient statistic for pand o

Sol Let us write 0=(u,c?) the

L= 1T1(x,.0)= [GF] [ L3 —m]

[ - Jexp[— 12{i(xm—zﬁzixi+nu2D=ge[t(x)]h(x)
o201 20° Lia i-1

Where g,[t(x)]= ( \/_J ( i{itzx 2ut, (X)+nNnu D

And t(x) ={ta(%), (3= {zl (x.), 21 (x. )2} and h(x)=1

Thus t1(x)= i(xi), is sufficient for x and ta(x}= i(xi)2 is sufficient for
i=1 i=1
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5.6 SELF ASSESSMENT QUESTIONS

Question:-1. When would you say that estimate of a parameter is good? In
particular, discuss the requirements of consistency and Unbiasedness of an
estimate. Give an example to show that a consistent estimate need not be

unbiased.

Question:-2. Discuss the terms (i) estimate, (ii) consistent estimate, (iii)
unbiased estimate, of a parameter and show that sample mean is both consistent
and unbiased estimate of the population mean.

Question:-3 (b) If Xi, X3, X3, ..., Xn,. are the sample means based on

samples of sizes nj, n, N3 ..., N,. respectively, an unbiased estimator

_ NXy+N,X, +..+ N X
k

t

Has been defined to estimate u.Find the value of k.

Question:-4 We are given that

f(X,u,GZ):iexp{—[ﬂﬂ; n<X <o, —0 < U <o,
c2 c
and 0<o <o

Obtain

() an unbiased estimate of u when o is known
(i)  anunbiased estimate of o when pis known

Question:-5

Q) Does the consistency of an estimator imply that its variance

approaches zero as the sample size increases without limit?
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(i)  Why is asymptotic efficiency defined only for consistent

estimators?
Question:-6 Examine whether following statement are true or false.
Q) Consistent estimators re asymptotically unbiased.

(i) Bias and error are the two statistical terms which refer to the same

characteristic of an estimator.
(iii) ~ Mean Square Error is the difference of two quantities:
variance and square of bias.

(iv)  Sample variance is unbiased estimator of the population variance.

Question:-7 Discuss whether Unbiasedness or efficiency is the more
desirable property of an estimator to be used to estimate the annual exports of

each product of a developing country, when:

@ Suppose you wish to establish a long run average annual growth
rate for total exports;

(b) Suppose you wish to establish import controls for a given year
based on amount of foreign exchange available from exports
average annual growth rate for total exports
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Unit 2 Lesson 6

METHODS OF ESTIMATION

Structure:

6.1  Introduction

6.2  Objectives

6.3 Method of Maximum Likelihood

6.4  Exercises based on Method of Maximum Likelihood
6.5  Method of Moments

6.6  Exercises based on Method of moments

6.7  Self assessment questions

6.1 INTRODUCTION

Whenever we take a sample, we do so with an idea of learning. something
about the population from which the sample is drawn. In statistical terminology,
this learning is termed as statistical inference which is of two kinds; estimation
and hypothesis testing. Both types of statistical inference utilise the information
provided by the sample, for drawing some conclusions about the parameters of the
population; yet each type of inference uses this information in different ways.

So far we have been discussing the requirements of a good estimator There
are various methods of estimation which lead us to estimators that possess
different properties. These estimators are known by the names that indicate the
nature of the technique used in deriving the formula. The method of moments,
least squares method and the maximum likelihood method; all three methods lead
to estimators which are known by the names of these techniques.
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6.2 OBJECTIVES

The main aim of this lesson is to enable the learners to obtain the
estimators which possess the requirements of a of a good estimator by making use
of the different estimation techniques such as method of moments, least squares
method and the maximum likelihood method

6.3 METHOD OF MAXIMUM LIKELIHOOD

The most important procedure of estimation is the method of maximum
likelihood. The basic principle underlying this technique of estimation is that
different populations generate different samples, and that any given sample is
more likely to have come from some population than from others. Assume that we
obtain a sample of n—observations of whose parent population is normal. In fact
our sample might have been generated by many different normal populations. But
suppose the mean of our observed sample is 10. Now, we ask ourselves; to which
population does our sample most likely belong? In general, as we have said, any
normal population could be its parent population and the one which has mean
equal to 10 (or near about 10) is likely to generate samples with mean equal to 10.

As shown in the below given figure.

1 ’/

£, ] ‘) 1
X R X Ka Ke Ky Ky Xy Ko Xiy

If X1, X2, X3, ..., Xq1 depict 11 specific sample observations. These
observations could have come from any of the normal populations A, B or C. The

probability of obtaining our sample from A, or C appears to be very small, but the
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probability of getting the same sample from population B is very high. As such we
say that the particular sample is more likely to have come from population B than
from populations A or C. Here we did not refer to the variance of the different
populations, and as we know, every population is characterised by its mean and
variance. A sample with large variance is more likely to be obtained from a
population with large variance than from a population with a small variance. In
other words we ought to consider combinations of specific mean and variance of
the population in relation to combinations of specific mean and variance of the
(observed) sample.

With this background let us now define the maximum likelihood estimator

in a formal way.

This method was initially formulated by C.F. Gauss but as a general

method of estimation was introduced by Prof. R.A. Fisher.

Let X1, X, ... Xn, be @ random sample from a population with p.m.f. (for
discrete case) or p.d.f. (for continuous case)f(x, ), where 6 is the parameter.

Then the joint distribution of the sample observations viz.
L= f(x.0), f(%,.0), F(Xg.0)oormrr o L f(x..0) =[] (x;,6)
i-1

is called the Likelihood Function of the sample.

The Method of Maximum Likelihood consists in choosing as an estimator
of 6 that statistic, which when substituted for 6, maximizes the likelihood
function L. Such a statistic is called a maximum likelihood estimator (m.l.e.)
denoted by 6,

Since log L is maximum when L is maximum, in practice the m.lL.e. of 9 is
obtained by maximizing log L. This is achieved by differentiating log L partially
with respect to 6, and using the two relations
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Here L>0 and Log L are non decreasing function of L. Eq (1) can be

rewritten by

1oL 1 oLogL
——= = — =0
L 00 L 00

Here (2) is termed as likelihood equation for estimating

Properties of maximum likelihood estimator (m.l.e.)

We make the following assumptions, known as the Regularity

Conditions:

2
() The first and second order denvatives, viz., a—aelogL and aa?logL

exist and are continuous functions of ¢ in a range R (including the true value 0,

of the parameter) for almost all x. For every 6 inR
[ilo L}<F(x) 2 JogL |<F,(x)
0 e 06? ?

where F1(x) and F»(x) are integrable functions over (— oo, )

3
(i) The third order derivative 0 algg L exists such that

83
{% log L} <M(x)

where E[M(x)] <K, a positive quantity.
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(i) Forevery 6 inR,

82 0 82
E|———logL |= ——logL Ldx=1(6
|

is finite and non-zero.

(iv) The range of integration is independent of 6. But if the range of

integration

depends on®© ,then f(x,0) vanishes at the extremes depending on 0 .This

assumption is to make the differentiation under the integral sign valid.

Under the above assumptions M.L.E. possesses a number of important

properties,

(1) “With probability approaching unity asn — oo, the likelihood equation
a—aelog L =0, has a solution which converges in probability to the true value 0,”

In other words ML.E. ‘s are consistent. The m.1l.e. is consistent, most
efficient, and also sufficient, provided a sufficient estimator sexists.

(2) Any consistent solution of the likelihood equation provides a maximum
of the likelihood with probability tending to unity as the sample size (n) tends to
infinity.

(3) (Asymptotic Normality of MLE’s). A consistent solution of the

likelihood equation is asymptotically normally distributed about the true value 0.

Thus, 0 is asymptotically N(OO,LJ, as n—oo.

1(6,)

4 The m.l.e. is invariant under functional transformations. This means that

iftisan m.l.e. of 6, and g(o) is a function of @, then g(t) is the m.l.e. of g(¢).

5. If M.L.E. exists, it is the most efficient in the class of such estimators.
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Remark: M.L.E’s are always consistent estimators but need not be

unbiased. For example in sampling from N (,) population,

6.4 EXERCISES BASED ON METHOD OF MAXIMUM LIKELIHOOD

Exercise: On the basis of a random sample find the maximum likelihood

estimator of the parameter A of a Poisson distribution.

Solution:- The Poisson distribution with parameter m has p.m.f as given

below

-m X

e m

X!

f(m,x) = (x=01.2......0)

The likelihood function of the sample observations is

L=f(x,.m), f(x,. m),f(Xgm). ... , f(x,.m)
And
log L =log f(x;.m) +log f(x,.m) + log f(x;.m)... ,+log f(x,.m)

ilogf(xi, m) = > [-m + X; (logm) —log X;!] = —nm + log(m)Zx; — Zlog(x;!)

Taking partial derivative of log L with respect to the parameter m,

[ 0 } TX; nx
—IlogL |=—n+—t=-n+—
om m m

Now replacing m by m and equating the result to zero,
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Solving we get m, =X, again

2 — —
{ 0 log L} :—ﬁ:—%:—g which is negative
m=m X

m? m;  X?

This shows that log L is maximum at m = mg =x .That is the m.l.e.of m is
mo=X , the sample mean:

Exercise: Find the maximum likelihood estimator of the variance o2of a
Normal population N(u, &2), when the parameter u is known. Show that this

estimator is unbiased.

Solution:- The p.d.f of Normal distribution is

f(x,un,0%) =

1 exp(—i[x—p]z) ; (—o0 < X < 0)
G\/E 262
And its likelihood function is

L=ﬁlf<xi,u,cz)=(cjz—n] exp[—%é(xi —u)z]

The logarithm of likelihood function L is

(x —u)T

logL = ZIog(xi,u,az) = 2{— logo —%Iog(Zn) e
(o}

i=1

n n (X —u)’
=——logo? ——log(27) - =52
21000 ~5l0g(@m) === =

Differentiating partially with respect to o>

dlogL N 2(x; —p)?
=— +
dc?)  26%  2(c?)?

The m.l.e. &2 of is obtained by solving
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2
_ n2+z(xi _4H) =0
26 20,

2(X; —p)°

2 _
Gy =
n

0 n
It can be shown that —logL =——
do oi=ats 200

which is negative. Thus the maximum likelihood estimator ofo? is

2
cg = M1 (known)
n

Again, since Xi, Xp, ...Xn IS @ random sample and s the population mean

we have

E(x; —p)? = o2 therefore,

SE(X; —w)? _ Zo” _ 2
n

E(co) =

Thus %0 is unbiased estimator of &2

Exercise: Find the m.l.e. of the parameterspando? in random samples

froma N(u, o?) population, when both the parameters are unknown.

. 1 1 2
Solution f(x,u,c?) = exp| — ——[x - (0 < X <
(xwo’) =1 p( L u]] (con < X < 0)

2
logL = —glog c® —nlog +/(2m) _Z(Xzi——zu)
(e}
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{6 log L} - _%ZZ(Xi —Ho)(-D) =0
o - 20

This gives Z(X; —pg) =0;ie., py =X the sample mean. He m.l.e of the
parameter u is the
sample mean X ( This estimator is unbiased)

Proceeding as in the above example

(X —p)? _ . . .
cé =M, Since parameter u is unknown it is replaced by its
n
m.l.e and we use p =X to get
2(x; - X)° _
n )

oh = S? Which is the sample variance

Exercise: If n; trials conducted are of Bernoullian type following binomial

distribution, find the maximum likelihood estimate of p.

Solution. We know that probability function of binomial distribution is
nl X; n; —X; H
f(nl,xi):( jp dl-p) T fori=1,2......... n
X
The likelihood function,
n(n
L(x/p)= H( jp @-p)™
i=1\ X

Taking logarithm of both sides,

logL = ilog(”l}ixi logp+ 3 (n; - x;) log(L— p)
i i=1 i=1

i=1 i

Differentiating partially w.r.t p and equating to zero.
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It is the trivial to show that —- is the maximum likelihood estimate of p.
n;

6.5 METHOD OF MOMENTS

This is the oldest estimation method in statistics. The underlying principle
in this method is that the sample moments reflect the population characteristics in
the sense that the expected values of the sample moments are equal to the
population moments.

It was first put forward by Karl Pearson in 1894. The method of moments consists
of equating the sample moments to the corresponding moments of distribution,
which are the functions of the unknown parameters. Here, we equate as many
sample moments as there are unknown parameters. Solving these equations
simultaneously we get the estimates of the moments of the population in terms of

sample variates.
Here we equate the moments of the population with the corresponding
moments of the sample, i.e. setting
e =M,
Where u, = E(X) and m}:%ix{ Also p, =E(X)=p
i=1

These relations when solved for the parameters give the estimates by the
method of moments. This method is applicable only when the population
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moments exist. The method is generally applied for fitting theoretical distributions

to observed data.

Properties of the estimates obtained by the method of moments.

(1) Under fairly general conditions, the estimates obtained by the method
of moments will have asymptotically normal distribution for large n.

(if) The mean of the distribution of estimate will differ from the true value
of the parameter by

a quantity of order 1/n

(iii) The variance of the distribution of estimate will be of the type ¢?/n.

(iv) In general, the deviation estimators obtained by the method of

moments are less efficient than the maximum likelihood estimators. In particular

cases, they are equivalent.

6.6 EXERCISES BASED ON METHOD OF MOMENTS
Exercise: Estimate the parameter np of the binomial distribution by the
method of moments (when n is known).

Solution:-If X~B(n,p) then its p.m.f is given by

n
f(n,x) =(ijx(1—p)nX x=0,1,2....... n
And p; =E(X)=np Also m; =X
Setting p, =m; we have np =X Thus p :%

86



i.e. the estimated value of p is given by the sample mean divided by the

parameter n (known).

Exercise: Find the estimates of x and o in the Normal population N(  ,
o?) by the method of moments.

Ans. Let Xj, Xy, ..., X n be a random sample from a normal population N(
p, o?)

We know that u, =m, =p=X
and p, =p, —(1y)° :%inz -X? :%(inz —niz) :%Z(Xi —YZ)Z
fori=0,1,2....... n
Therefore, X is an unbiased estimator of x whereas sample variance
%Z(xi —X)? is not an unbiased estimator foro2.
i=1

Exercise: Find the estimate of the parameter A the Poisson distribution

e—)\.}\‘x
by the method of moments.

Solution: Let X;, Xz, .., X n be a random sample from a normal
population a Poisson distribution P (x; 1). We know in case of Poisson

distribution, its mean and variance are equal. The mean,

. . 0 e—x;\‘x 0 N kx—l
=m, =E[X] = ) X =1D. e x=012.....0
M= PP P T )

=Ar=X

Thus, the estimate of the parameter 4 by the method of moments is the

sample mean X .
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6.7

SELF ASSESSMENT QUESTIONS

1.

10.

11.

12.

Why do the decision makers often measure the sample rather than
the entire population. What is the disadvantage?

Explain the shortcoming that occurs n the point estimation but not
in an interval estimation. What measure is included with an interval

estimation that compensate for this ?

What is an estimator ? How does an estimate differ from an

estimator?
List and briefly describe the criteria of a good estimator.

Describe the M.L method of estimation and discuss five of its

optimal properties.

Describe the method of moments for estimation .What are the
properties of the estimator obtained by the method of moments ?

What two basic tools are used in making statistical inferences?

Why do decision makers often measure samples rather than entire
populations? What is the disadvantage?

Explain a shortcoming that occurs in a point estimate but not in an
interval estimate. What measure is included with an interval

estimate to compensate for this?

What is an estimator? How does an estimate differ from an

estimator?
List and describe briefly the criteria of a good estimator.

What role does consistency play in determining sample size?
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13.  State and explain the principle of maximum likelihood for
estimation of population parameter.

14. Describe the M.L. method of estimation and discuss five of its

optimal properties.

15.  Compute the likelihood function for a random sample of size n for
the each of the following populations.

(i) Normal (06,6%) (i) Binomial (n,p)
(iii) Poisson (t) (iv)  Uniform (a,b)

16. Describe the method of moments for estimating the parameters.
What are the properties of the estimates obtained by this method?

17. Let X1, X2 evnnnnn Xn be a random sample from the p.d.f.

f(x,0)=6"" O<x<oo, 0>0
=0, elsewhere

Estimate 6 using the method of moments.

18.  Explain the methods of estimation-method of moments and
maximum likelihood. Do these lead to the same estimates in
respect of the standard deviation of a normal population?
Examine the properties of the estimates from the point of view of
consistency and Unbiasedness.

19. For the distribution with probability function:

-0 X
f(x,6)=e—ee; x=123.....
x!l1l-e™)

Obtain the estimate of 6 by the method of moments.
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Unit 2 Lesson NO.7

CONFIDENCE INTERVAL AND CONFIDENCE INTERVAL

Structure:

7.1  Introduction

7.2 Objectives

7.3 Definition

7.4 Meaning and interpretation
7.5  Desirable properties

7.6 Method of derivation

7.7  Exercises topic

7.8 Summary

7.9  Self assessment Questions

7.1 INTRODUCTION

Interval estimation can be contrasted with point estimate. . A point
estimate is a single number that is used to estimate an unknown population
parameter. An interval estimate is a range of values used to estimate a population
parameter. Confidence interval are commonly reported in tables or graphs along
with point estimates of the same parameter, to show the reliability of the

estimates.

7.2 OBJECTIVES

In statistics, a confidence interval (C.l)is a particular type of interval

estimation of a population parameter and is used to indicate the reliability of an
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estimate. It is an observed interval (i.e. it is calculated from the observations), in
principle different from sample to sample, that frequently includes the parameter
of interest, if the experiment is repeated. How frequently the observed interval
contains the parameter is determined by the confidence level or confidence
coefficient.

A confidence interval with a particular confidence level is intended to give
the assurance that, if the statistical model is correct, then taken over all the data
that might have been obtained, the procedure for constructing the interval would
deliver a confidence interval that included the true value of the parameter the
proportion of the time set by the confidence level. More specifically, the meaning
of the term "confidence level” is that, if confidence intervals are constructed
across many separate data analyses of repeated (and possibly different)
experiments, the Proportion of such intervals that contain the true value of the
parameter will approximately match the confidence level; this is guaranteed by the
reasoning underlying the construction of confidence intervals.

A confidence interval does not predict that the true value of the parameter
has a particular probability of being in the confidence interval given the data
actually obtained. An interval to have such property is called a credible interval,
can be estimated by using Bayesian method; but such methods bring with them
their own distinct strengths and Weaknesses.

7.3 DEFINITION

Let X be a random sample from, probability distribution with parameter 6
, which is the quantity to be estimated , and let ¢ represents the quantity not of

immediate interest. A confidence interval for the parameter 0, with confidence
level y , is an interval with random endpoints (u(x), v(x)) determined by the pair
of statistics u(x) and v(x), with the property

7 =R, U(x) <0 <v(x))

The quantities ¢ in which there is no immediate interest are called

nuisance parameter, as Statistical theory Still needs to find some way to deal with
them.The number y, With typical values close to but not greater than 1 is

Sometimes given in the form 1—«a (Or as a Percentage 100% (1—« ), where « , a
small nonnegative number close to 0.
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Here P 6, ¢ is used to indicate the probability when the random variable
X has the distribution characterized by (6,¢). An important part of this

specification is that the random interval (U,V) covers the unknown value 6 with a
high probability no matter what the true value of 6 actually is.

Note that here P. 0, p need not refer to an explicitly given parameterized

family of distributions, although it often does. Just as the random variable X
notionally corresponds to other possible realizations of x from the same
population or from the same version of reality, the parameters (8, ¢) indicate that

we need to consider other versions of reality in which the distribution of X might
have different characteristics.

In a specific situation, when x is the outcome of the sample X, the interval
(u(x), v(x)) is also referred to as a confidence interval for 6. Note that it is no
longer possible to say that the (observed) interval (u(x), v(X)) has probability y to

contain the parameter@. This observed interval is just one realization of all
possible intervals for which the probability statement holds.

CONFIDENCE INTERVAL AND CONFIDENCE LIMITS: Let us
consider a random sample x;, (i = 1, 2, ..., n) of n observations from a population

involving a single unknown parameter g, (say). With probability function
f(x, ©) and let us suppose that this distribution is continuous. Let
t =t(X1, X2, ey Xn)

be a function of the sample values be an estimate of the population
parameter 6, with the sampling distribution given by

a(t, 0).

After obtaining the value of the statistic t from a given sample, the
problem is, “Can we make some reasonable probability statements about the
unknown parameter ¢ in the population, from which the sample has been drawn?”
This question is very well answered by the technique of Confidence interval due

to Neyman

We choose once for all some small value of « (5% or 1%) and then

determine two constants say, ¢; and ¢, such that
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Pc1<0 <Clt)=1-«a

The quantities ¢; and c,, so determined, are known as the confidence limits
or fiducial limits and the interval [c;, c;] within which the unknown value of the
population parameter is expected to lie, is called the confidence interval and (1-« )

is called the confidence coefficient.

E.g., if we take a = 0.05 we shall get 95% confidence limits.
7.4 MEANING AND INTERPRETATION

The confidence interval can be expressed in terms of samples (or repeated
samples): "Were this procedure to be repeated on multiple samples, the calculated
confidence interval (which would differ for each sample) would encompass the
true population parameter 90% of the time." Note that this need not be repeated
sampling from the same population, just repeated sampling.

The explanation of a confidence interval can amount to something like:
The confidence interval represents values for the population parameter for which
"the difference between the parameter and the observed estimate is not statistically
significant at the 10% level”. In fact, this relates to one particular way in which a
confidence interval may be constructed.

The probability associated with a confidence interval may also be
considered from a pre-experiment point of view, in the same context in which
arguments for the random allocation of treatments to study items are made. Here
the experimenter sets out the way in which they intend to calculate a confidence
interval and know, before they do the actual experiment, that the interval they will
end up calculating has a certain chance of covering the true but unknown value.
This is Very Similar to the "repeated sample™ interpretation above, except that it
avoids relying on considering hypothetical repeats of a sampling procedure that
may not be repeatable in any meaningful sense.

In each of the above, the following applies: If the true value of the
parameter lies outside the 90% confidence interval once it has been calculated,
then an event has occurred which had a probability of 10% (or less) of happening
by chance.

The probability associated with a confidence interval may also be
coinsidered from a pre-experiment point of view, in the same context in which
arguments for the random allocation of treatments to study items are made. Here
the experimenter sets out the way in which they intend to calculate a confidence
interval and know, before they do the actual experiment, that the interval they will
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end up calculating has a certain chance of covering the true but unknown value.
This is Very Similar to the "repeated sample™ interpretation above, except that it
avoids relying on considering hypothetical repeats of a sampling procedure that
may not be repeatable in any meaningful sense.

In each of the above, the following applies: If the true value of the
parameter lies outside the 90% confidence interval once it has been calculated,
then an event has occurred which had a probability of 10% (or less) of happening
by chance.

7.4.1 MEANING OF THE TERM "CONFIDENCE"

There is a difference in meaning between the common usage of the word
"confidence™ and its statistical usage, which is often confusing to the layman, and
this is one of the critiques of confidence intervals, namely that in application by
non-statisticians, the term "confidence™ is misleading.

In common usage, a claim to 95% confidence in something is normally
taken as indicating virtual certainty. In statistics, a claim to 95% confidence
simply means that the researcher has seen something occur that happens only one
time in 20 or less. If one were to roll two dice and get double six (which happens
1/36th of time , about 3%) a few would claim this as proof that the dice were
fixed, although statistically although statistically speaking one could have 97%
confidence that they were. Similarly, the finding of a statistical link at 95%
confidence is not proof, nor even very good evidence, that there is any real
connection between the things linked.

When a study involves multiple statistical tests, people tend to assume that
the confidence associated with individual tests is the confidence one should have
in the results of the study itself. In fact, the results of all the statistical tests
conducted during a study must be judged as a whole in determining what
confidence one may place in the positive links it produces. For example, say a
study is conducted which involves 40 statistical tests at 95% confidence, and
which produces 3 positive results. Each test has a 5% chance of producing a false
positive, so such a study will produce 3 false positives about two times in three.
Thus the confidence one can have that any of the study's positive conclusions are
correct is only about 32%, well below the 95% the researchers have set as their
standard of acceptance

7.5 DESIRABLE PROPERTIES

When applying standard statistical procedures, there will often be standard
ways of constructing confidence intervals. These will have been devised so as to
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meet certain desirable properties, which will hold given that the assumptions on
which the procedures rely are true. These desirable properties may be described
as: validity, optimality and invariance. Of these "validity” is most important,
followed closely by "optimality"”. "Invariance” may be considered as a property of
the method of derivation of a confidence interval rather than of the rule for
constructing the interval. In non-standard applications, the same desirable
properties would be sought.

Validity: This means that the nominal coverage probability (confidence
level) of the confidence interval should hold, either exactly or to a good
approximation.

Optimality: This means that the rule for constructing the confidence
interval should make as much use of the information in the data-set as possible.
Recall that one could throw away half of a data set and still be able to derive a
valid confidence interval. One way of assessing optimality is by the length of the
interval, so that a rule for constructing a confidence interval is judged better than
another if it leads to intervals whose lengths are typically shorter.

Invariance: In many applications the quantity being estimated might not
be tightly defined as such. For example, a Survey might result in an estimate of
the median income in a population, but it might equally be considered as
providing an estimate of the logarithm of the median income, given that this is a
common scale for presenting graphical results. It would be desirable that the
method used for constructing a confidence interval for the median income would
give equivalent result when applies to constructing a confidence interval of
logarithm of the median income; specifically values at the ends of the latter
interval would be the logarithms of the values at the ends of the former interval.

7.6 METHODS OF DERIVATION

For non-standard applications, there are several routes that might be taken
to derive a rule for the construction of confidence intervals. Established rules for
Standard procedures might be justified or explained via several of these routes.
For Typically a rule for constructing confidence intervals is closely tied to a
particular that Way of finding a point estimate of the quantity being considered.

7.6.1 STATISTICS

This is closely related to the method of moments for estimation. A simple
example arises where the quantity to be estimated is the mean, in which case a
natural estimate is the sample mean. The usual arguments indicate that the sample
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a variance can be used to estimate the variance of the sample mean. A new
confidence interval for the true mean can be constructed centered on the sample
mean with a width which is a multiple of the square root of the sample variance.

7.6.2 LIKELIHOOD THEORY
Where estimates are constructed using the maximum likelihood principle,

the theory for this provides two ways of constructing confidence intervals or
confidence regions for the estimates.

7.6.3 ESTIMATING EQUATIONS

The estimation approach here can be considered as both a generalization of
the method of moments and a generalization of the maximum likelihood approach.
There are corresponding generalizations of the results of maximum likelihood
theory that allow confidence intervals to be constructed based on estimates
derived from estimation equation.

Via significance testing

If significance tests are available for general values of a parameter, then
confidence intervals/regions can be constructed by including in the 100p%
confidence region all those points for which the significance test of the null
hypothesis that the true value is the given value is not rejected at a significance
level of

7.7.1 STATISTICAL HYPOTHESIS TESTING

Confidence intervals are closely related to statistical significance testing.
For example, if for some estimated parameter ¢ one wants to test the null
hypothesis that 6 =0 against the alternative that 6 =0 , then this test can be
performed by determining whether the confidence interval for 6 contains 0.

More generally, given the availability of a hypothesis testing procedure
that can test the null hypotheses 0 = 6,against the alternative that 6 =6, for any
value of 6. Then a confidence interval confidence level 1-y with can be defined
as containing any number 6, for which the corresponding null hypothesis is not
rejected at significance level « ’
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In consequence, if the estimates of two parameters (for example, the mean
values of a variable in two independent groups of objects) have confidence
intervals at a given value y that does not overlap, then the difference between the

two values is significant at the corresponding value of « . However, this test is too
conservative. If two confidence intervals overlap, the difference between the two
means still may be significantly different.

7.7.2 CONFIDENCE REGION

Confidence region generalize the confidence interval concept to deal with
multiple quantities. Such regions can indicate not only the extent of likely
sampling error but can also reveal whether (for example) it is the case that if the
estimate for one quantity is unreliable then the other is also likely to be unreliable.

In applied practice, confidence intervals are typically stated at 95%

confidence level. However, when presented graphically, confidence intervals can
be shown at several levels, for example 50%, 95% and 99%.

7.7.3 INTERVALS FOR RANDOM OUTCOMES

Confidence intervals can be defined for random quantities as well as for
fixed quantities as in the above. For this, consider an additional single-valued
random variable Y which may or may not be statistically dependent on X. Then
the rule for constructing the interval (u(x), v(x)) provides a confidence interval for
the as-yet-to-be observed value y of Y if

y="R, (u(x) <0 <v(x))
Here P, is used to indicate the probability over the joint distribution of
the random variables (X, Y) when this is characterised by parameters (6, ¢) .

Approximate confidence intervals

For non-standard applications it is sometimes not possible to fine rules for
constructing confidence intervals that have exactly the required properties. But
practically useful intervals ¢an still be found. The probability c (0, ¢) for a random

interval is defined by
Pr,, (U(x) <@ <V(x)) =c(0,9)

And rule for constructing the interval may be accepted as providing a
confidence interval if

c(0,9)zl-a for all (6, ¢)
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to an acceptable level of approximation.

EXAMPLE:

Find 100(1- & )% confidence for (i) & (ii) o2 in normal population with p.d.f

2
f(x,0,0%) = 12 eXp[_%(X_yj ] —00 < X <0
oN2m o

Sol: Let us consider a random sample x;, (i = 1, 2, ..., n) of n observations from

n n
density function f(x,0,02) and suppose i:%in and 52=le(xi—>?)2 then
i=1 n-lig

statistic

= ~ oy
S
b

Hence 100(1- a )% confidence for 6 are given by

P[ft|<t,]=1-a or P Xs_9 <t, |=1-a

Jn
or P[ |Y—9|£7\/ﬁta}:1—a

P[ i—ta%/ﬁsesina 7m}=1—a

where t, is the tabulated value of t for (n-1) degrees of freedom at o level of

significance. Hence required level of significance is

RS TERS

(ii) let 6 is unknown = u (say) then
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7.8

ns 2
62 62 %n

CEIOR

If we define chi-square as such

P[xz > x§]= ip(xz)dzz =a
Ao

Hence reqd. confidence interval is given by

2 2 2
Pll(l—alz) <xy° < Zalzjzl—a

2 ns’ 2
=P XiaiyS—5 < Xapp |[=l-a (1)
o
2 2 , )
ns 2 ns 2 ns ns
NOW_ZSZa/2: 2 <o and Z(Z]__a/z)g—2:>UZS 2
d Xal2 o X(-al2)

Hence from (1)

2 2

n n

=P fgazg 25 =l-a
Xal2 X(1-al?2)

Which is the required confidence interval

Summary

Confidence intervals is to define a 100(1—«)% confidence interval of all
these values of 6 for which a test of the hypothesis 6 =6, is not rejected at a

significance level of 100a % . Such an approach may not always be available

Since it presupposes the practical availability of an appropriate significance test.
Naturally, any assumptions required for the significance test would carry over to

the confidence intervals.

It may be convenient to make the general correspondence that parameter
values within a confidence interval are equivalent to those values that would not
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be rejected by an hypothesis test, but this would be dangerous. In many instances
the confidence intervals that are quoted are only approximately valid, perhaps
derived from "plus or minus twice the standard error”, and the implications of this
for the supposedly corresponding hypothesis tests are usually unknown.

7.9 SELF ASSESSMENT QUESTIONS

1. What do you understand by confidence and explain its desirable
properties.
2. Obtain 100(1— )% confidence interval for parameter u in the

random sample from normal population:
df (x)=ue™™ x>0, u>0

3. Obtain 100(1— )% confidence interval for unknown parameter p

of a binomial distribution when the parameter n is known in the

random sample from normal population
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Unit 3 Lesson 8

TESTING OF HYPOTHESES

Structure:

8.1 Introduction

8.2 Objectives

8.3 Concepts Basic to the Hypothesis-Testing Procedure
8.4 Test of Significance

8.5 Critical region

8.6 One-and two-tailed Tests

8.7 Size (Level of significance) and Power of a Test

8.8 Degrees of freedom

8.9 P-Values

8.10 Self Assessment Questions

8.1 INTRODUCTION

Hypotheses testing begin with an assumption; called hypotheses that we
make about a population parameter. Then we collect sample data, produce
sample statistics, and use this information to decide how likely it is that our
hypothesized population parameter is correct. Say that we assume a certain value
for a population mean. To test the validity of our assumption, we gather sample
data and determine the difference between the hypothesized value and the actual
value of the sample mean. Then we judge whether the difference is significant.
The smaller the difference, the greater the likelihood that our hypothesized value
for the mean is correct. The larger the difference, the smaller the likelihood.
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Unfortunately, the difference between the hypothesized population
parameter and the actual statistic is more often neither so large that we
automatically reject our hypothesis nor so small that we just as quickly accept it.
So in hypothesis testing, as in most significant real-life decisions, clear-cut
solutions are the exception, not the rule.

8.2 OBJECTIVES
Objectives of this lesson is to enable the learners

1. To learn how to use samples to decide whether a population
possesses a particular characteristic

2. To understand the basis of testing procedure
4. To learn when to use one- tailed tests and when to use two-tailed
tests

5. To hypothesis and its types hypotheses

6. To understand the concept of critical region and P-values

8.3 CONCEPTS BASIC TO THE HYPOTHESIS-TESTING PROCEDURE

Hypothesis testing begins by making an assumption about the population
parameter. Then we gather sample data and determine the sample statistic. To
test the validity of our hypothesis the difference between the hypothesized value
and the actual value of the sample statistic will be determined. If the difference
between the hypothesized population parameter and the actual value is large
then we automatically reject our hypothesis. If it is small, we accept it.

The theory of testing of Hypothesis was initiated by J. Neyman and E.S.
Pearson. In Neyman Pearson Theory we use statistical methods to arrive at a

decision in certain situations where there is lack of certainty on the basis of the
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sample where size is fixed in advance while in Wald sequential theory the

sample size is not fixed in advance but regarded as a random variable.

TYPES OF HYPOTHESIS

In attempting to arrive at decision about the population on the basis of
sample information, it is necessary to make assumptions or guesses about the
population parameters involved. Such an assumption is called a statistical
hypothesis which may or may not be true. The procedure which enables us to
decide on the basis of a sample, whether a hypothesis is true or not, is called

Test of Hypothesis or Test of Significance. There are two hypotheses:
*  Null Hypothesis
»  Alternative Hypothesis.
NuLL HYPOTHESIS

In tests of hypothesis, we always begin with an assumption, the null
hypothesis. The null hypothesis asserts that there is no (significant) difference
between the statistic and the population parameter and whatever observed
difference is there, it is merely due to chance (fluctuations in sampling from the
same population). Null hypothesis is usually denoted by the symbol Ho.

A hypothesis which is to be actually tested for acceptance or rejection is
termed as null hypothesis. As the name suggests it is always taken as hypothesis
of no difference. The decision maker should adopt a null or neutral attitude
regarding the outcome of the test. It is denoted by Ho.In the words of prof. R.A
Fisher

“Null hypothesis is the hypothesis which is tested for possible
rejection under the assumption that it is true”
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In hypothesis testing, a statistician or decision-maker should not be
motivated by prospects of profit or loss resulting from the acceptance or
rejection of the hypothesis.

Much, therefore, depends upon how the hypothesis is framed. Hence the
best course is to adopt the thesis of no difference. If we want to test the
significance of difference between a statistic and a parameter or between two
sample statistics, and then we set up null hypothesis Hy that the difference is
not significant. This means that the difference is just due to the fluctuations of

sampling. E.g H, = pgowhere pgis some specified value of p

ALTERNATIVE HYPOTHESIS

Any hypothesis which contradicts the null hypothesis Ho is called an
Alternative Hypothesis and is denoted by the symbol H;.We can say that it is a
statement about the population parameter or parameters, which gives an
alternative to the null hypothesis (Ho), within the range of pertinent values of the
parameter, i.e., if Ho is accepted, what hypothesis is to be rejected and vice

Versa.

It is desirable to state what is called an alternative hypothesis in respect
of every statistical hypothesis being tested because the acceptance or rejection of
null hypothesis is meaningful only when it is being tested against a rival
hypothesis which should rather be explicitly mentioned. If null hypothesis is

Hy i =pgwhere pyis some specified value of p then alternative could be
(1) Hi:pzppie,. pn<py, or u>p, (Two tailed alternative)
(2) Hy tp<pg left tail (one tailed alternative)

(3) Hytp>pg right tail (one tailed alternative)
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The Alternative Hypothesis in (1) is known as a two-tailed alternative
and in (2) and (3) is known as left-tailed and right-tailed alternatives
respectively. The corresponding tests of hypotheses are called two-tailed (or

two-sided), right-tailed (one-sided) and left-tailed (one-sided) tests respectively.

STATISTICAL HYPOTHESIS (Simple and Composite)

A statistical hypothesis is a statement, an idea or an assertion about a
population or equivalently about probability distribution characterizing a
population which we want to verify on the basis of information available from

the sample.

‘A hypothesis is an assertion or conjecture about the parameter(s) of

population distribution(s)”

If statistical hypothesis specifies the population completely then it is
termed as simple. If statistical hypothesis does not specifies the population

completely then it is termed as Composite.
Example:-1  let for a random sampleXx,,X,,....X,from a normal

population with mean x and variance &% the hypothesis

S IETETI o2 =02 is simple hypothesis as in  N(u,c?%)
O=[u=py,0>0%>w]
Where as () p=py,

(ii) 6? =}
(i) u<py, o’=o
2

(iv) u>po, o =cjare composite hypothesis
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A hypothesis which doesn’t completely specify the ‘r’ parameters of the
population is termed as composite hypothesis with ‘r’ degrees of freedom. A
hypothesis may be simple or composite depending upon the alternative

hypothesis.

Example:-2. For instance, we consider a normal population N(u,c?),
where o is known and we want to test the hypothesis, H, : u = 25 against Hi: p
=30. From these hypotheses we know that u can take either of the two values, 25
or 30, In this case, Ho and H; are both simple. But generally H, :pn#25 is
composite, i.e. of the form, H,:p<250rH, :pn>25. Likewise, simple and

composite hypothesis for any other parameter(s) can be stated.

8.4 TEST OF SIGNIFICANCE

A research worker or an experimenter has always some fixed ideas about
certain population parameter(s) based on prior experiments, surveys or
experience. Sometimes these ideas might have been fixed in the mind. There is a
need to ascertain whether these ideas or claims are correct or not by collecting
information in the form of data. In this way, we come across two types of
problems, first is to draw inferences about the population on the basis of sample
data and the other is to decide whether our sample observations have come from

a postulated population or not.

By hypothesis we mean to give postulated or stipulated value(s) of a
parameter. Also, instead of giving values, some relationship between parameters
is postulated in the case of two or more populations. On the basis of
observational data, a test is performed to decide whether the postulated
hypothesis be accepted or not. This involves certain amount of risk. This amount

of risk is termed as a level of significance. When the hypothesis is accepted, we
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consider it a nonsignificant result and if the reverse situation occurs, it is called

a significant result.

STATISTICAL TEST

A test is defined as, “A statistical test is a procedure governed by certain
rules, which leads to take a decision about the hypothesis, for its acceptance or
rejection on the basis of sample values.”

USES OF STATISTICAL TESTS

Statistical tests of hypotheses play an important role in industry,
biological sciences, behavioral sciences and economics, etc. The use of tests has
been made clear through a number of practical problems.

1. A feed manufacturer announces that his feed contains forty per
cent protein. Now to make sure whether his claim is correct or
not, one has to take a random sample of the product and by
chemical analysis, find the protein percentages in the samples.
From these observed values, he would decide about the
manufacturer’s claim for his product. This is done by performing
a test of significance.

2. Psychologists are often interested in knowing whether the level of
1Q of a group of school boys is up to a certain standard or not. In
this case, some boys are selected and an intelligence test is
conducted. The scores obtained by them pass through a statistical
test and a decision is made whether their 1Q is up to the standard

or not.
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8.5 CRITICAL REGION (C.R.)

A statistic is used to test the hypothesis Hy. The test statistic follows
' some known distribution. In a test, the

area under the probability density curve is

Acceptance divided into two regions, viz., the region
region

w of acceptance and the region of rejection.

The region of rejection is the region in

which Ho is rejected. It means that if the

value of test statistics lies in this region, Ho (null hypothesis) will be rejected.

The region of rejection is called a critical region. Moreover, the area of
the critical region is equal to the level of significance« . The critical region is
always on the tail of the distribution curve. It may be on both the tails or on one
tail, depending upon the alternative hypothesis.

In short the value of the standard statistic beyond which we reject the

null hypothesis; the boundary between the acceptance and rejection regions.

8.6 ONE AND TWO-TAILED TESTS

If the alternative hypothesis, H; is of the type up>pyor p<p, etc., the

critical region lies on only one tail of the probability density curve. In this
situation the test is called one-tailed test.

If Hy is of the type H; :pn>p, the critical region is towards the right

tail as shown below

Critical Value
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On contrary to this, if the alternative hypothesis, H; is of the type

n<p, the critical region lies on only one tail (left tail) of the probability

density curve. In this situation (H, : > ) the critical region is towards the left

tail

Critical Value

If the test is two-tailed, i.e., it is of the typeH; :p# p, then the test is

called two-tailed test and in such a case the critical region lies in both the right
and left tails of the sampling distribution of the test statistic, with total area

equal to the level of significance as shown in diagram.

—wre Critical Value “—we Critical WValus

If the alternative hypothesis is of the type H;:p=p,

e,  u<p, or u>p, the critical region lies at the both the tails , in this
situation test is called two tailed test and an area equal to % lies at the both the

tails.
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8.7  SIZE (LEVEL OF SIGNIFICANCE) AND POWER OF A TEST

The main purpose of hypothesis testing is not to question the computed
value of the sample statistic, but to make judgment about the difference between
the sample statistic and a hypothesized population parameter. After stating the
Null and Alternative Hypotheses, we have to decide what criterion to be used for

deciding whether to accept or reject the null hypothesis.

In testing a given hypothesis the minimum probability with which we
would be willing to risk a type one error is called as level of significance. The
size of a test is the probability of rejecting the null hypothesis when it is true,
and is usually denoted by «. The level of, significance and size are synonymous
in a practical sense. Therefore.

PlrejetH, /Hy]=a ..(1)

For example when we choose 5% level of significance in a test
procedure, there are about 5 cases in 100 that we would reject the hypothesis
when it should be accepted, that is, we are about 95% confident that we have
made the right decision. Similarly, if we choose 1% level of significance in
testing a hypothesis, then there is only 1 case in 100 that we would reject the
hypothesis when it should be accepted.

Suppose, that under a given hypothesis the sampling distribution of a
statistic Ois approximately a normal distribution with mean E(6) and standard

deviation (Standard Error) oy.

Then z = Observed value - Expected value is called the standardized

Standard Error of 6

normal variable or z-score, and its distribution is the standardized normal
distribution with mean 0 and standard deviation 1, the graph of which is shown
below.
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95%
Critical
. region

Critical
region 2 5%

Acceptance region

-1.96 z=0 1.96

From the above figure, we see that if the test statistic z of a sample
statistic O lies between —1.96 and 1.96, then we are 95% confident that the
hypothesis is true.

But if for a simple random sample we find that the test statistic (or z-
score) z lies outside the range —1.96 to 1.96, i.e. if z > 1.96, we would say that
such an event could happen with probability of only 0.05 (total shaded area in
the above figure if the given hypothesis were true). In this case, we say that z-
score differed significantly from the value expected under the hypothesis and
hence, the hypothesis is to be rejected at 5% (or 0.05) level of significance. Here
the total shaded area 0.05 in the above figure represents the probability of being

wrong in rejecting the hypothesis. Thus if z > 1.96, we say that the hypothesis is
rejected at a 5% level of significance.

Remark: - The set of z scores outside the range —1.96 and 1.96,
constitutes the critical region or region of rejection of the hypothesis or the
region of significance. Thus critical region is the area under the sampling
distribution in which the test statistic value has to fall for the null hypothesis to
be rejected.

Thus choosing a certain level of probability with which we would be
willing to risk error of type-I, is called level of significance.

POWER OF A TEST :-The power of a test is defined as the probability
of rejecting the null hypothesis when it is actually false, i.e., when Hj is true. It
is ability of a statistical test to detect the alternative hypothesis when it is true .

Power=P[rejetH,/H;] =1-P[acceptH,/H,]
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=1-Prob.of type —llerror=1-
where (3 is the probability of type Il error.

Among a class of tests, the best test is the one which has the maximum

power for the same size i.e., same level of significance a..

8.8 DEGREES OF FREEDOM

In a test of hypothesis, a sample is drawn from the population of which
the parameter is under test. The size of the sample varies since it depends either
on the experimenter or on the resources available; moreover, the test statistic
involves the estimated value of the parameter which depends on the number of
observations. Hence, the sample size plays an important role in testing of

hypothesis and is taken care of by degrees of freedom.

Summing up we can say that the number of values in a sample we can
specify freely, once we know something about that sample is known as degrees
of freedom

Definition: Degree Of Freedom is the number of independent

observations in a set.

8.9 P-VALUES

It may be defined as the smallest level of aat which Hyis rejected. In

this situation , it is not inferred whether H, is accepted or rejected at level 0.05,

0.01 or any other value, but the statistician only give the smallest level of « at
which Hy is rejected.
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This facilitates the individual to decide for himself as to how much
significant the data are. This approach avoids the imposition of fixed level of
significance.

1. For the right tailed test, the P—value is the area to the right of the
computed value of the test statistic under Hy

Right-Tailed Test

o 4
Test Statistigs
2. For the left tailed test, the P-value is the area to the left of the
computed value of the test statistic under Ho
Left-Tailed Test

P-value

G

Test Statistic

3. For the two-tailed test, P-value is

@ Twice the area to the left of the computed value of test statistic
under Ho, if it is negative or,

(b) Twice the area to the right of the computed value of test statistic
under Ho, if it is Positive

The P-value for two-tailed test is twice the area on either tail (left or
right) of the computed value of test statistic under Ho
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! Two-Tailed Test

P-value
= Twice this area

0y

Test Statistic (Positive)

" Two-Tailed Test

P-value
= Twice this arca

0
Test'Statistic (Negative)

8.10 SELF ASSESSMENT QUESTIONS

Question No:-1 What is a critical region and on what basis, are we able
to know about the position of critical region(s)?

Question No:-2 Why are the degrees of freedom so important in taking a
decision about the rejection or acceptance of a hypothesis?

Question No:3 Define the following terms:
(a) one tailed and two tailed test.

(b) Test of significance.

(c) Degrees of freedom.

(d) Level of significance.

(e) Composite hypothesis.

Question No:4 Write short notes on:

(a) Randomized test.
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(b) One-tailed test.
(c) Critical region.
(d) Statistic.

(e) P-value concept.

Question No:4 What is a critical region and on what basis, are we able to

know about the position of critical region(s)?
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Unit 3 Lesson 9

TESTING OF HYPOTHESES

Structure:

9.1  Introduction

9.2  Objectives

9.3  Types of Error

9.4  Procedure for testing the hypothesis
9.5  Illustration

9.6  Sampling from attributes

9.7  Self Assessment Questions

9.1 INTRODUCTION

We observed that there are essentially two kinds of statistical inferences,
estimation and hypothesis testing. Both are concerned with learning something
about an unknown aspect of a population on the basis of sample information. We
have so far discussed the problems relating to estimation; presently our concern
shall be the problem of testing hypotheses. A hypothesis is a theoretical
proposition that is capable of empirical verification or disproof. It may be
viewed as an explanation of some event or events, and which may be true or
false explanation. Three forms of hypotheses are generally described in
statistics; maintained, simple and composite. Those assumptions that are not
exposed to any test are called the maintained hypotheses; while the remaining
are called testable hypotheses. The A hypothesis is a theoretical proposition that
is capable of empirical verification or disproof. It may be viewed as an

explanation of some event or events, and which may be true or false explanation.
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Three forms of hypotheses are generally described in statistics; maintained,
simple and composite. Those assumptions that are not exposed to any test are
called the maintained hypotheses; while the remaining are called testable

hypothesis.

The procedure, by which we are able to reject our null hypothesis, is
called criterion of test. In other words criterion of test refers to setting up of the
boundary between critical and acceptance regions which is determined by many
considerations; such as, the prior information concerning the distribution of the
test-statistic, by the specification of the alternative hypothesis and so on.

The test criterion, however, may not always give us correct conclusions.
In making any decision we are liable to commit one of the two types of error in
this lesson

9.2 OBJECTIVES

Objectives of this lesson is to enable the learners

1. To learn how to use samples to decide whether a population
possesses a particular characteristic

2. To determine how unlikely it is that an observed sample could
have come from a hypothesized population and further, how to
check the validity of our assertion about the population

3. To understand the two types of errors possible when testing
hypotheses

4. To learn when to use one- tailed tests and when to use two-tailed
tests

5. To learn the five-step process for testing hypotheses

6. To understand how and when to use the normal distribution for

testing hypotheses about population means and proportions
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9.3 TYPES OF ERROR

We make decision about theH, (Null hypothesis) on the basis of the

information supplied by the observed sample observations. The conclusion
drawn on the basis of a particular sample observation may not always be true in
the in respect of the population. There are four possible situations which may

arise if a statistical hypothesis is tested.

True State Decision from the sample
Reject H, Accept Hy
Incorrect decision Correct decision
Hytrue (Type-I Error)
H, false Correct decision Incorrect decision
(Type-I1 Error)

If a statistical hypothesis is tested, as shown in the above table, we may

get the following four possible cases:
a. The null hypothesis is true and it is accepted;
b. The null hypothesis is false and it is rejected,;
c. The null hypothesis is true, but it is rejected,;

d. The null hypothesis is false, but it is accepted.
118



Clearly, the last two cases lead to errors which are called errors of
sampling. The error made in (c) is called Type | Error. The error committed in

(d) is called Type Il Error. In either case a wrong decision is taken.

Thus we can say that, Error of rejecting Hywhen it is true is called as the
type-I error and the error of accepting H, when it is false is called as type-II
error. The probabilities of type-1 and Type-11 errors are denoted respectively by
oand B.Thus

o= Possibility of type-1 error= Probability of rejecting Hywhen H; is
true.

B =Possibility of type-Il error= Probability of acceptingH,when H, is
false.

Symbolically

P[xew/Hyl=a, where X =X;,X;,...X,

= [Lydx=a

where L, is the likelihood function of sample observations under Hjand
[dxrepresents n-fold integral [ [ ... Jdx;dX,....dx,.If we find x e @ we reject
Hyand if we find x e @ we accept H,. Where ® and o are two disjoint and
exhaustive subsets of the set S(The set of all possible outcomes of the variable
X).

Again

Plxe®/H,]=B or [Ldx=p

where L, is the likelihood function observations under H,
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Since we have

[Lidx+[Ldx=1 = [L;dx=1-[L,dx=1-8

or P[xew/H;]=1-p PP ()

Note:

1.a, the probability of the type —I error is known as the level of

significance. It is also called as the size of the test.

2. 1-p as defined in (*) is called as the power function of the test for
testing Hyagainst the alternativeH,. The value of the power function at a

particular point is called as the power of the test at that point.

3. An ideal test would be one which properly keeps under control both
the type of errors, unfortunately for fixed sample size n, o and [ are so related
(like producers and consumers in sampling inspection plan) that the reduction in
one results in an increase in the other. Consequently simultaneous minimizing of
both the errors is not possible. Since error of type-l1 seems to be more serious.
The usual practice is to control o at predetermined low level and subject to this

restriction, choose a test which minimizes 3 or maximize the power function

1-B, generally we choose o.=0.05 or .01.

The general idea behind the two types of errors. can also be illustrated by
an example of testing null hypothesis against simple alternative hypothesis..
Assume that we obtain a sample of n-observations. We are to examine whether
this sample belongs to a normal population A with mean X or population B with
mean = Y (We are not considering the variances of the populations sample for
the time being.)

So we have: Hy :p=py
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Hii p=py
The level of significance may be chosen a priori as, say, 5 per cent. Since
the alternative hypothesis isp=p, that and assuming that p, >, = only high
values of observed sample mean X (which is test-statistic in the present case)

relative to pu, would constitute evidence against Ho.

The two distributions A and B are compared diagrammatically in below
given figure where in we show the probabilities of two types of error involved in

hypothesis testing.

O/,
2
C
2

®

My, X5 Hy

i

Error type | is committed whenever X falls to the right of the boundary
point X, (assuming that Hy is true) and its probability is given by the chosen
level of significance (i.e., 5 per cent) and corresponds to the blackened area. The
error type Il occurs whenever we do not reject Ho when it is in fact false. This
happens whenever Xfalls to the left of X, (assuming that Ho is not true). The
probability of making this error is given by the striped area in above figure. As
could be seen, the decrease in the probability of one type of error can be brought
about only at the cost of increase in the probability of another type of error. We
can decrease the probability of error type | by shifting the boundary point Xg
farther to the right. But by doing so we would obviously increase the striped area
which represents the probabilities of error type Il. Then, the question arises, how
to decrease the probabilities of both types of error simultaneously? The only way
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in which we can reduce the probabilities of both kinds of error at the same time
is by increasing the size of sample.

94 PROCEDURE FOR TESTING THE HYPOTHESIS

The first step in hypothesis testing is that of formulation of the null
hypothesis and its alternative. The next step consists of devising a criterion of
test that would enable us to decide whether the null hypothesis is to be rejected
or not. For this purpose the whole set of values of the population is divided into
two regions:

The acceptance region and rejection regions. The acceptance region
includes the values of the population which have a high probability of being
observed, and the rejection region or critical region includes those values which
are highly unlikely to be observed. The test is then performed with reference to
test-statistic. The empirical tests that are used for testing the hypothesis are
called tests of significance. If the value of the test-statistic falls in the critical
region, the null hypothesis is rejected; while if the value of test-statistic falls in
the acceptance region, the null hypothesis is not rejected.

The various steps involved in testing of a statistical hypothesis are as

under.
1. Null Hypothesis: we set up the Null Hypothesis Ho,.

2. Alternative Hypothesis. Next we set up the alternative hypothesis Hj.
This will enable us to decide whether we have to use a single-tailed (right or

left) test or two-tailed test.

3. Level of Significance. Appropriate level of significance « is chosen
depending on the reliability of the estimates and permissible risk. This is to be
decided before sample is drawn,

4. Test Statistic: we compute the test statistic:
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Ct-E(t)
~ SE(t)

under Ho

5. Conclusion. We compare the computed value of Z in step 4 with the

significant value (tabulated value) Z, at the given level of significance, ‘o’

If |Z| <z, i.e. if the calculated value of Z (in modulus value) is less than

Z,, we say it is not significant. By this we mean that the difference t- E(t) is just

due to fluctuations of sampling and the sample data do not provide us sufficient
evidence against the null hypothesis which may, therefore, be accepted.

If |Z| >Z ie., if the computed value of test statistic is greater than the

critical or significant value, then we say that it is significant and the null
hypothesis is rejected at level of significance o, i.e., with confidence coefficient
(1-a)

Let us examine each step separately in a detailed manner as described
below.

Step 1: The object of statistical inference is to derive conclusions about
the population parameter, from the sample statistics. Certain rules are to be
followed to measure the Level of uncertainty and decide whether to accept or
reject our conclusions. To do this, the best way is to compare the sample
estimate with the true value of the population parameter. When true value of
population parameter is unknown, some assumption about the value of the true
population parameter is made. This is then formulation of null hypothesis.
There could be a very large number of hypothetical values which may be
compatible with our sample estimate. To avoid such problem, it has become
customary to make the hypothesis that the true population parameter is equal to

Zero.
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Step 2: In making any decision, one is liable to commit one of the
following types of errors:

Error type I: Rejects the null hypothesis, when it is actually true.
Error type 11: Accepts the null hypothesis, when it is actually wrong.

One would like to minimise type | and type H errors. But unfortunately,
for any given sample size, it is not possible to minimise both the errors
simultaneously. The classical approach to this problem is to assume that a type |
error is likely to be more serious in practice than a type-II error. Therefore, one
should try to keep the probability of committing a type | error at a fairly low
level, such as 0.01 or 0.05, and then try to minimise the type 11 error as much as
possible. The probability of type | error is called the level of significance.
Choosing a certain level of significance would mean specifying the probability
of committing a type | error.

Step 3: The critical region includes only those values that correspond to

the level of significance. But the critical region may be chosen at
(i) the right end
(i) the left end
(iii) half at each end of the distribution of the variable.

In the first and second cases, it involves one-tail test and in the third case
it involves a two-tail test. The decision on, which of the two to choose’ would
depend on the form in which the alternative hypothesis is expressed.

(1) H:pzppie,. pu<py or u>p,  (Two tailed alternative)
(2) Hy:p>p, right tail (one tailed alternative)

(3) Hy:p<p, left tail (one tailed alternative)
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The location of the critical region would depend on the direction at which
the inequality sign points One has to choose the right tail as the critical region if
the inequality sign is greater than; the left hand tail as the critical region if the
inequality sign is less than, and a two-tail critical region when the inequality
sign is not equal to.

Step 4: The choice among the various tests of significance depends on
two things

(a) Size of sample, and (b) information on population variance

()  If the variance of parent population is known, Z-test is appropriate
(irrespective of the normality of the population and the sample

size).

(i) If the variance of the parent population is not known but the size of
sample is large (it is greater than 30 observations), Z-test is still
appropriate because the estimate of the population variance from a
large sample is a satisfactory estimate of the true population

variance.

(iii) I the variance is not known and also the size of sample is small
(less than 30 observations), t-test is appropriate provided that the

parent population is normal. And so on

Step 5: Once the decision has been taken about the particular test of
significance, the test-statistic has to be computed from the observed sample
observations to conduct the required test.

Step 6: The final step of the hypothesis testing is to compare the
computed value of the test-statistic with that of tabulated theoretical value of this

statistic.
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9.5 ILLUSTRATION

Suppose that we are given the following information

n=236, s=6,X =499, a=10%. And let us suppose that we have to
test the hypothesis that population mean is equal to 500 against the alternative
that it is less than 500 i.e

1. H,:p=500and H,:pn <500
This is a left-tail test with a o =10%.

2. oy =%=6/6=1 X ~N(500,1)

3. Critical region is z <-1.28

The z-score = 499 — 500 = —I

Since —1 <—1.28, Hy is accepted.

What is the probability that we are wrong?

B= P(The Null Hypothesis is false but sample statistic falls in the

acceptance region)
The acceptance region for the standard normal curve is Z > —1.28.

Therefore, the acceptance region for the distribution of X is

Z= X -500 > _1.28

Gx

X >-1.286 +500=500—1.28x1=498.72

Therefore,

B =P (X >498.72|u = 500)
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We cannot compute the probability unless p is known. Suppose
n=499.5
Then B =P (X >498.72|n = 499.5)
=P[(X-p)/oy 2(498.72)/ oy ] |u= 499504 =1)
=P[Z > (498.72 — 499.5) /1]
=P[Z >-0.78] =0.5+0.2823=0.7823

(1-p) indicates how powerful the test is. A high (1-p) (that is, close to
1) implies that the test is doing exactly what it should be doing: Rejecting Ho

when it is false. And a low (1-p) indicates poor performance.

9.6 SAMPLING FROM ATTRIBUTES

Let us consider a sample from a population which is divided into two
mutually exclusive and collectively exhaustive classes-one class possessing a
particular attribute A (say), and the other class not possessing that attribute, The
presence of an attribute in sampled unit may be termed as success and its
absence as failure. In this case a sample of n observations is identified with that
of a series of n independent Bernoulli trials with constant probability P of
success for each trial. Then the probability of x successes in n trials, as given by

n
the binomial probability distribution is: p(x) =cp*q"™; x=0, 1, 2... ....n.

as well. The only difference is that now, since we’re dealing with a
proportion, the binomial distribution is the correct sampling distribution to use.
We know that as long as n is large enough to make both np and nq at least 5, we
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can use the normal distribution to approximate the binomial. If that is the case,
we proceed exactly as we did with interval estimates of the mean.

9.7 SELF ASSESSMENT QUESTIONS
Question No:-1 Throw light on the need of the testing of hypothesis.

Question No:-2 Discuss a hypothesis, What types of hypotheses do you
know? Discuss each of them.

Question No:-3 Discuss two types of errors in the testing of hypotheses.
What is their role in testing?

Question No:-4 What do you understand by a large sample test?

Question No:-5 Why are the degrees of freedom so important in taking a

decision about the rejection or acceptance of a hypothesis?
Question No:- 6. Define the following terms:
(a) Type Il error.
(b) Power of a test.
(c) Degrees of freedom.
(d) Level of significance.
(e) Composite hypothesis.

Question No:-7 what is the role of an alternative hypothesis in
hypotheses testing?

Question No:-8. Explain the basic principle of interval estimation as
invented by J.Neyman.

Question No:-9 Write “Yes’ if the statements given below are correct,

otherwise write ‘No’

128



(a) Degrees of freedom take care of the sample size in a decision problem
about a hypothesis.

(b) Randomized test also involves some statistic.

(c) Each statistic has some distribution.

(d) Critical region is always on one tail only.

(e) Standard deviation of an estimate and standard error are the same.
(I) Interval estimate is better than point estimate.

Question No:-10 Write whether the following statements are correct:
(a) Z-value lies between 0 and o .

(c) Variance of a sample can be any value between —oo and oo.

(d) When o= 0, we have to accept Ho.

(e) When a.=1, we have to reject HO.
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Unit 3 Lesson 10

TESTS OF SIGNIFICANCE OF DIFFERENCE OF PROPORTION

Structure:

10.1 Introduction

10.2  Objectives

10.3  Test of significance for single proportion

10.4 Examples based test of significance for single proportion

10.5 Test of significance of difference of proportions

10.6 Examples based test of significance for difference of proportion

10.7  Self Assessment Questions

10.1 INTRODUCTION

Let us consider a sample from a population which is divided into two
mutually exclusive and collectively exhaustive classes-one class possessing a
particular attribute A (say), and the other class not possessing that attribute, The
presence of an attribute in sampled unit may be termed as success and its
absence as failure. In this case a sample of n observations is identified with that
of a series of n independent Bernoulli trials with constant probability P of
success for each trial. Since we are dealing with a proportion, the binomial
distribution is the correct sampling distribution to use. We know that as long as
n is large enough to make both np and nq at least 5, we can use the normal
distribution to approximate the binomial. If that is the case, we proceed exactly
as we did with interval estimates of the mean. So while dealing with the testing
the significance of proportions we make use of the binomial distribution further
we can use the normal distribution to approximate the binomial for large
samples.
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10.2 OBJECTIVES

Objectives of this lesson is to enable the learners

1.

To learn how to use samples to decide whether a population
possesses a particular characteristic

To determine how unlikely it is that an observed sample could
have come from a hypothesized population and further, how to
check the validity of our assertion about the population proportion

To understand the use test of significance when testing the
significance for single proportion

To test of significance when testing the significance difference of

two proportions in case of large population .

In general, to understand how and when to use the normal
distribution for testing hypotheses about population means and
proportions

10.3 TEST OF SIGNIFICANCE FOR SINGLE PROPORTION

Let us consider a sample from a population which is divided into two
mutually exclusive and collectively exhaustive classes-one class possessing a
particular attribute A (say), and the other class not possessing that attribute, The
presence of an attribute in sampled unit may be termed as success and its
absence as failure. In this case a sample of n observations is identified with that
of a series of n independent Bernoulli trials with constant probability P of
success for each trial the binomial distribution is the correct sampling
distribution to use.
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Then the probability of x successes in n trials, as given by the binomial

probability distribution is: p(x) :<n: p*q"* ' x=0,1,2......n.

Further we can use the normal distribution to approximate the binomial.
If that is the case, we proceed exactly as we did with interval estimates of the
mean.

If X is the number of individuals (units) possessing the given attribute in
n independent trials with constant probability P of success for each trial, then

p= observed sample proportion= x/n
E(X)=nPand V (X)=nPQ,
where Q = 1- P. is the probability of failure. For large samples, the
binomial distribution tends to normal distribution.

Hence for large n, X~ N (nP, nPQ), , the standard normal variate
corresponding to the statistic p is

- B s
| %
If we have a sampling from finite population of size N S.E of p is given
[N - nj PQ
N-1) n

Probable limits for observed proportion of success is given by

by

E(p)+3SE(p) =P+3,"Y/

if P is not known than we take p (sample proportion) as the estimate of P
and probable limits for observed proportion of success are
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px3 p%

Rejection rule for H, :P =P,

Suppose that we are taking 5% level of significance then for testing
significance at 5% level, the rules are as follows:

(i) If the alternative hypothesis is that the population proportion P is
‘different’

from Po,i.e P # Pyreject Ho when the value of z lies outside the range-1
.96 to 1.96.

Hi: P #Py; Critical Region |Z|>1.96

(i) If the alternative hypothesis is that the population proportion P is
‘greater’ than Py, reject Ho when the value of Z is greater than 1.645.

Hi:(P> Py); Critical Region Z> 1.645

(iii) If the alternative hypothesis is that the population proportion P is
‘less’ than Py, reject Ho when the value of z is less than - 1.645.

Hi:(P< Py); Critical Region Z- 1.645

Otherwise, do not reject the null hypothesis Ho. Similarly for testing at

1% level and 10% the rejection rule are given below in a tabular manner

Level of significance o 10% 5% 1%
Critical region for P =P, |Z|>1.64 |Z|>1.96 |Z|>2.58
Critical region for P <P, Z<-1.28 z<-1.64 7<-2.33
critical region for P > P, Z>1.28 Z>1.64 Z>2.33

133



For large samples (n > 30), the sampling distributions of many statistics
are approximately normal distribution. In such cases, we can use the results of
the table given above to formulate decision rules.

10.4 Examples based test of significance for single proportion

Example::In order to check that what proportion of the employees prefer
to provide their own retirement benefits in lieu of a company-sponsored plan. a
simple random sample of 75 employee was taken and we find that 0.4 of them
are interested in providing their own retirement plans. Management wants to
find an interval about which they can be 99 percent confident that it contains the

true population proportion.
Sol: In usual notations we have
n=75 — Sample size, p= 0.4 — Sample proportion in favor
g=0.6 — Sample proportion not in favor

Now the standard error of sample proportions is estimated by

5 =4PG/n= 04)(0.6) 4)(0 ®) _ /0.0032 =0.057

— Estimated standard error of proportion

A 99 percent confidence level would include 49.5 percent of the area on
either side of the mean in the sampling distribution. From the table we see that
0.495 of the area under the normal curve is located between the mean and a
point 2.58 standard errors from the mean. Thus, 99 percent of the area is
contained between plus and minus 2.58 standard errors from the mean. Our
confidence limits then become
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p+2.586, = 0.4+ 2.58x0.057 = 0.547,0.253

Thus, we estimate from our sample of 75 employees that with 99 percent
confidence we believe that the proportion of the total population of employees

who wish to establish their own retirement plans lies between 0.253 and 0.547.

Example: In a sample of 1,000 people from a particular area, 540 prefer
diet A and the rest prefer diet B. Can we assume that both rice and wheat are
equally popular in this State at1% level of significance?

Solution.

In the usual notations, we are given : n = 1,000 X = Who prefer diet A =
540

p = Sample proportion of those Who prefer diet A = x/n =540/1000 =
0.54

Null Hypothesis, Ho: Both diet A and diet B are equally popular in the
area so that

P =Population proportion of diet A=0¢5 = Q=1-P =0.5.
Alternative Hypothesis, H; : P # 0.5 (two-tailed alternative)

Under HO, the test statistic is

z- PP ~N(01) or
%

054-050  0.04 5 539

4= \/0.50>< 050, = 00138

Conclusion. The significant or critical value of Z at 1% level of

significance for two- tailed test is 2.58, Since computed Z = 2.532 is less than
2.58, it is not significant at 1% level of significance. Hence the null hypothesis
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is accepted and we may conclude that diet A and diet B are equally popular in

that area.

Example: : A die is thrown 9,000 times and a throw of 3 or 4 is observed
3,240 times. Show that the die cannot be regarded as an unbiased one and find

the limits between which the probability of a throw of 3 or 4 lies.

Solution. If the coming of 3 or 4 is called a success, then in usual

notations n 9,000; X = Number of successes = 3,240
Under the null hypothesis (Hp) that the die is an unbiased one, we get

P = Probability of success = Probability of getting a 3 or 4=1/6+1/6 =1/3
Alternative hypothesis, Hy : p= 14, (i.e., die is biased).

X-nP

JnNPQ

We have Z= ~N(02)

since n is large

| 3240-9000x (1/3) 240

= o000 W3 x (273 2000 > ~N(01)

Since |Z|> 3, Ho is rejected and we conclude that the die is almost

certainly biased.
Since die is not unbiased, P ¢%. The probable limits for ‘P’ are given
by:

P+3/PQ/n=p=./pq/n where

p 3240

%" and O=1-p=1-0.36=0.64
P =9000=036 Q P
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Probable limits for population proportion of successes may be taken as:

P +3,/PQ/n =0.36i,/%

0.6x0.8
36 + ——— =0.345,0.375
30410

Hence the probability of getting 3 or 4 almost certainly lies between
0.345 and

0.375.

Example: A random sample of 500 oranges was taken from a large
consignment and 65 were found to be bad. Show that the S.E. of the proportion
of bad ones in a sample of this size is 0.015 and deduce that the percentage of
bad oranges in the consignment almost certainly lies between 8.5 and 17.5.

Solution.

Here we are given: n = 500 X = Number of bad pineapples in the
sample =65

p =Proportion of bad pineapples in the sample =65/500 = 0.13 q=1-
p=0.87

Since p, the proportion of bad pineapples in the consignment is not

known, we may take

P=p=0.13, Q=q=0.87.

SE of proportion=+/PQ/n =+/0.13x0.87/500 = 0.015

Thus, the limits for the proportion of bad pineapples in the consignment

are:
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P +3,PQ/n =0.130+3x0.015= 0.30 + 0.045= (0.085, 0.175)

Hence the percentage of bad oranges in the consignment lies almost
certainly between 85 and 17.5.

Example:Twenty people were attacked by a disease and only 18
survived. Will you reject the hypothesis that the survival rate, if attacked by this
disease, is 85% in favour of the hypothesis that it is more, at 5% level. (Use
Large Sample Test.)

Solution. In the usual notations, we are given. n = 20, X = Number of
persons who survived after attack by a disease = 18 p = Proportion of persons
survived in the sample = 0.90

Null Hypothesis, HO : P= 0.85, i.e., the proportion of persons survived
after attack by a disease in the lot is 85%.

Alternative Hypothesis, H; : P> 0.85 (Right-tailed alternative).

Under Ho,

s -P
the test statistic is ~ Z = ~N(0,1) or

"%

090-0.85  0.05

7 - - - 0.633
\/0.85>< o.1y 0.079
20

Conclusion. Since the alternative hypothesis is one-sided (right-tailed),
we shall apply right-tailed test for testing significance of. Z. The significant
value of Z at 5% level of significance for right-tailed test is + 1.645. Since
computed value of Z= 0.633 is less than 1.645, it is not significant and we may
accept the null hypothesis at 5% level of significance.
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10.5 TEST OF SIGNIFICANCE OF DIFFERENCE OF PROPORTIONS

Suppose we have to compare two large populations say A and B with
respect to the prevalence of a certain attribute among their members. Let X, X»
be the number of persons possessing the given attribute in large random
samples of sizes n; and n, from the two populations respectively.

Then sample proportions are given by

p1= observed proportion of success in a sample from population A=
X1/n1

P, = observed proportion of success in a sample from population B=
Xz/nz.

If P, and P, are population proportions, then

E(p1) = P1. E(p2) =P

V)= [Z2 and V(p,)= T2
m n;

Since for large samples, p1 and p, are independently and asymptotically
normally distributed, (p1 -p2) is also normally distributed. Then the standard
variable corresponding to the difference (p:-p2) is given by:

(P.—P,) —E(P,—P))
Z= ~N(0,1
\/V(pl—pz) ( )

Under the null hypothesis, Ho : P1=P,. i.e., there is no significant

difference between the sample proportions, we have
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E(p,—p,) =E(p,) -E(p,) =P, -P, =0
Also  V(p,~p,) =V (P1)+V(p,)

the covariance term Cov( p1, p2) vanishes, since sample proportions are
independent.

P P. 1 1
= V(pl—pz):i]—Q1+2n—Q2:PQ(n—+n—j
1 2 1 N

[-underH, :P, =P, =P say,andQ, =Q, = Q]

Hence, under Hy P; = P, the test statistic for the difference of
proportions becomes

_ (PL—P,) _
~JPQ/n, +1/n,) N(©)

In general, common population proportion P under Hp is not known.
Under Ho: P, =P, = P (say), an unbiased estimate of the population proportion P
based on both the samples is

p = MP1+ MNPy _ X1+ X,
n,+n, n,+n,

Thus by using P in above stated test statistic we test for null hypothesis

10.6EXAMPLES BASED ON TEST OF SIGNIFICANCE OF DIFFERENCE OF

TWO PROPORTIONS

Example: Random samples of 400 men and 600 women were asked
whether they would like to have a cinema hall in their locality. 200 men and 325
women were in favor of the proposal. Test the hypothesis that proportions of
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men and women in favour of the proposal are same against that they are not, at
1% level.

Sol. Null Hypothesis Ho:P1 = P, = P (say), i.e., there is no significant
difference between the opinions of men and women as far as proposal of flyover

is concerned.
Alternative Hypothesis, Hy : P; P, (two-tailed).

We are given: n; = 400, X; = Number of men favoring the proposal =
200, n;=600, X, = Number of women favoring the proposal = 325

p1 =Proportion of men favoring the proposal in the sample :X%l:
220/400=0.5
p2= Proportion of women favoring the proposal in the sample =x,/n,

=325/600 = 0.541

Since samples are large, the test statistic under the Null Hypothesis,Hg is:

_ (PL—P,) _
~JPQ/n, +1/n,) NEY)

Under Ho: P; =P, = P (say), an unbiased estimate of the population

proportion P based on both the samples is

p_MPitnp, X +X, 200+325

- = = 0.525
n, +n, n,+n, 400+ 600
—Q=1-P=1-0.525=0.475

-0.041 _-0041_

~J0.001039  0.0323
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Conclusion. Since |z| =1.269 which is less than 2.58, it is not significant

at 1% level of significance. Hence Hy may be accepted at 5% level of
significance and we may conclude that men and women do not differ

significantly as regards proposal of flyover is concerned

Example: In a large city A, 20 per cent of a random sample of 900
school children had defective eye-sight. In other large city B, 15 per cent of
random sample of 1,600 children had the same defect. Is this difference between
the two proportions significant? Obtain 95% confidence limits for the difference
in the population pro portions.

Sol Sol In usual notations we have
p, =0.15 =, =0.85 and p, =0.20 =, =0.80

Under Ho: P1 =P, the test statistic for large samples is

_ (P —P2) _ -
- JPQ/n +1/n,) 321-N(0Y)

Where under Ho: Py =P, = P (say), an unbiased estimate of the
population proportion P based on both the samples is

n,+n,

Conclusion. Since the calculated value of Z is greater than 1.96, it is
significant at 5% level. We, therefore, reject the null hypothesis Hy and conclude

that the difference between the two proportions is significant.

The 95% confidence limits for the difference P; -P, are

(P, —P,) £1.96SEof (p, —p,):
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Where SEof (p,—p,) = \/PlQl + P,Q, _ \/plql L P29

ng n, ng n,

=0.016

B \/0.20x 0.80  0.15x0.85
- 900 1600

Hence 95% confidence limits for the difference P, -P, are

(0.20 - 0.15) £1.96(0.016) = 0.05 + 0.031 = 0.019,0.081

Where 0.019 is the upper confidence limit and 0.018 is the lower

confidence limit.

Example: A company has the head office at Delhi and a branch at
Mumbai.The H.R director wanted to know if the workers at the two places
would like the introduction of a new scheme of work and a survey was
conducted for this purpose. Out of a sample of 500 workers at Delhi, 62%
favoured the new plan. At Mumbai out of a sample of 400. 42% were against the
new plan. Is there any significant difference between their attitude towards the

new plan at 1% level?

SOL: Under Ho: there is no significant difference between their attitude

towards the new plan the, test statistic for large samples is:

_ (PL—P2) _ (PL—P2) - N(O,l)
SE(P1-P2)  \JPQ(t/n, +1/n,)

p_ P+ NP, 500x0.62 + 400x 0.59

=0.607 =Q=1-P=1-0.607=0.393

n o+, 500 + 400
7 0.62-0.59 _ Joodgim =0.917~N(01)
0607%0.393 + + L '
500 400
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Conclusion. Since the calculated value of Z is 0.917 which is less than
2.58, it is insignificant at 1% level. We, therefore, accept the null hypothesis Hg
and conclude that the there is no significant difference between the attitude of
employees posted at Delhi and Mumbai as for as the introduction of new scheme

is concerned.

10.7 SELF ASSESSMENT QUESTIONS

Question No:-1 Describe briefly the test of significance of difference of

single proportion.

Question No:-2 Write down the steps involved in testing the significance

of difference of two proportions
Question No:-3 Obtain 95% confidence limits in following cases
(a) For single proportion.(b) For two proportions

Question No:-4 when a sample of 70 retail executives was surveyed
regarding the poor performance of the retail industry 66 percent believed that
decreased sales were due to unseasonably warm temperatures, resulting in

consumers’ delaying purchase of cold-weather items.

@ Estimate the standard error of the proportion of retail executives

who blame warm weather for low sales.

(b) Find the upper and lower confidence limits for this proportion,

given a 95 percent confidence level.

Question No:-5 A noted social psychologist, surveyed 150 top executives

and found that 42 percent of them were unable to add fractions correctly.

(a) Estimate the standard error of the proportion.
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(b) Construct a 99 percent confidence interval for the true proportion
of top executives who cannot correctly add fractions.

Question No:-6 In a random sample of 200 men taken from area A, 90
were found to be consuming alcohol. In another sample of 300 men taken from
area B, 100 were found to be consuming alcohol. Do the two areas differ
significantly in respect of the proportion of men who consume alcohol?

Question No:-7 In arandom sample of 500 men from a particular district
of Maharashtra., 500 are found to be smokers. In one of 5,000 men from another
district, 650 are smokers. Do the data indicate that the two districts are
significantly different with respect to the prevalence of smoking among men?

Question No:-8 A factory is producing 40,000 pairs of shoes daily. From
a sample of 400 pairs, 3% were found to be of sub-standard quality. Estimate the
number of pairs that can be reasonably expected to be spoiled in the daily

production and assign limits at 99% level of confidence.

Question No:-9 A manufacturer claimed that at least 98% of the steel
pipes which he supplied to a factory conformed to specifications. An
examination of a sample of 500 pieces of pipes revealed that 30 were defective.
Test this claim at a significance level of (1) 0.05, (ii) 0+01.

Question No:-10 A random sample of size 1100 selected from a large
bulk of mass produced machine parts contains 7% defectives. What information
can be inferred about the percentage of defective in the bulk?
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Unit 3 Lesson 11

TESTS OF SIGNIFICANCE FOR MEANS

Structure:

11.1  Introduction

11.2  Objectives

11.3 Test of significance for single mean

11.4 Examples based test of significance for single mean

11.5 Test of significance of difference of two means

11.6 Examples based test of significance for difference of two means

11.7  Self Assessment Questions

11.1 INTRODUCTION

For large samples (n > 30), the sampling distributions of many statistics
are approximately normal distribution. The test of hypothesis about a population
mean or two population means, by the t-test, is applicable under the
circumstances that population variance(s) is/are not known and the sample(s)
is/are of small size. In cases where the population variance(s) is/are known, we
use Z-test (normal test). Moreover, when the sample size is large, sample
variance approaches population variance and is deemed to be almost equal to
population variance. In this way, the population variance is known even if we
have sample data and hence the normal test is applicable. The distribution of Z is
always normal with a mean zero and a variance 1. The value of Z can be read

from the table for the area under the normal curve,
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11.2 OBJECTIVES

Objectives of this lesson is to enable the learners

1.

To learn how to use samples to decide whether a population
possesses a particular characteristic.

To determine how unlikely it is that an observed sample could
have come from a hypothesized population and further, how to
check the validity of our assertion about the population mean

To understand the use test of significance when testing the
significance for single proportion

To learn how to use the test of significance of the significance

difference of two means in case of large population .

In general, to understand how and when to use the normal

distribution for testing hypotheses about population means

11.3 TEST OF SIGNIFICANCE FOR SINGLE MEAN

TEST OF SIGNIFICANCE FOR SINGLE MEAN. We know that if x; (i= 1,

2, ..., n) is a random sample of size n from a normal population with mean xand

variance o2, then the sample mean is distributed normally with mean p and

. (o) .
variance — L.e,,
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2
However, this result holds, i.e., X ~ N(u,c—), even in random sampling
n

from non-normal population provided the sample size n is large [ Central Limit
Theorem]. Thus for large samples, the standard normal variate corresponding X

to is:

_ X-p
Z=—1 e (1)

Under the null hypothesis Ho, that the sample has been drawn from a

population with mean p. and variance o2, i.e., there is no significant difference
between the sample mean (X) and population mean (u), the test statistic (for

large samples), is:

z-X"1 Ny e (2)

If the population s.d. & is unknown then we use its estimate provided by
the

sample variance given by 6% =s? oré=s (for large samples).Then
from(2)

z-X"H Ny
i

Confidence limits for u: 95% confidence interval for u is given by:

z|<196, ie, |XH
n

c/vn

= %X-1.96(c/\/n)<p<X+1.96(c//Nn)

<1.96,
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and Yil.%%ﬁ are known as 95% confidence limits for p.
Similarly, 99% confidence limits for . are

X —2.58(c//N) << X+ 2.58(c/+/n)

If the population s.d. & is unknown then we use its estimate provided by
the sample variance given by 62 =s? oré=s (for large samples).

However, in sampling from a finite population of size N, the

corresponding 95% and 99% confidence limits for u are respectively
N-n N-n
X+1.969/ —.| and ii2.587 |
/«/n N-1 vnV N-1

For testing at 1% level and 10% the rejection rule are given below in a

tabular manner

Level of 10% 5% 1%
significance a.

Critical region for |Z|>1.64 |Z|>1.96 |Z|>2.58
H#Ho

Critical region for 7<-1.28 z<-1.64 2<-2.33
H <Hg

critical region for Z>1.28 Z>1.64 Z>2.33
H>Ho

149



11.4 EXAMPLES BASED TEST OF SIGNIFICANCE FOR SINGLE MEAN

Example :A cinema hall has a cool drinks fountain supplying Orange and
Colas. When the machine is turned on, it fills a 550 ml cup with 500 ml of the

required drink.
The manager has two problems on hand.

I. The clients have been complaining that the machine supplies less
than 500 ml.

ii. The two colas are supplied by two different manufacturers, each
pressurizing him to drop the other supplier. Should he drop one?

On a particular day, he took a survey of 36 clients and X comes out to

be499 ml, specifications of the machine gave a s.d of 1 ml, Suppose that

manager wants to minimize the customer complaints, Here we can set the
hypothesis in three ways

Case-1

Ho:p=500 H,:u<500 and the test statistic under H, is

X—u c 1
Z= ~N(0,1) where — ===0.17 so that
oln @D Jn 6
4 :w:% This is a left-tailed test with level of significance
10%.
Rejection Acceptance

region \ region
< a2 >
1
1
1
)

-1.281
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Critical Region: Z <-1.28 Since -6 <-1.28, we reject Hyo.The machine was

not set up properly.

Case-2 Suppose the manager ignores customer’s complaints and instead

wants to control the volume. That is, on an average, he does not want an excess

outflow. We may set up the test as follows. Hy :u =500 H,:p>500 and

the test statistic is

z-X"H _N©.1) where i:%:o.n 50 that

oln Jn

Z= % =—6 This is a right-tailed test with o =10%.
Acceptance Rejection
region region
:
1
!
!
1 +1.28

Critical Region : z > +1.28, Since, this being a right tailed test the

acceptance region is given by Z < 1.28 and therefore we accept Ho.

Case 3: Suppose, we combine Case 1 and Case 2. That is the manager
intends to minimize customer complaints and does not want excess outflow. We

may set up the test as follows:
Hy:n=500 H,:pn=500

The test statistic is

z=""H N@©0.1) where

clJn

c 1
—==-=0.17 so that
Jn 6
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, _499-500 _

T, -6  This is a two-tailed test with o =10%.

Rejection Acceptance Rejection

region region .. fegion

1
1
1
'
|
1

164, i+ 164

Critical Region: Z >1.64, that is Z<-1.64 and Z > 1.64. Since -6 lies in
one of the rejection regions, we reject Ho.

Example: A sample of 900 members has a mean 3.4 cms. and s.d. 2.61
cms. Is the sample from a large population of mean 3.25 cms. and s.d. 2.61 cms.

?1f the population is normal and its mean is unknown, find the 95% and 98%
fiducial limits of true mean.

Solution. Null Hypothesis, (Hp): The sample has been drawn from the
population with mean x=3.25 cms. and S.D. = =2.61 cms.

Alternative Hypothesis, H1: 4 = 3.25 (Two-tailed).

Test Statistic. Under Ho, the test statistic is: z = );_” ~N(0,1) (Since nis
i
large.)

Here, we are given: x=3.4cms.,, n =900 x=3.25cms. and o= 2.61

cms.
7 _ 3.45-325_ 0.15x30 _ 173
2.6 2.61
+/900
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Since |z| < 196, we conclude that the data don’t provide us any evidence

against the null hypothesis (Ho) which may, therefore, be accepted at 5% level of

significance.

95% fiducial limits for the population mean . are:

o 2.61
X+196 — [=3.40+1.96) —— |=3.40+0.1705
(Jﬁ j (Jeaooj

I,e., 3.5705 and 3.2295

Example: A sample of size 400 was drawn and mean was found to be
99. Test whether this sample could have came from a normal population with

mean100 and standard deviation 8 at 5% level of significance
Sol: Here, we are given: x=99,n=400 px=100and =8

Null Hypothesis, (Ho): The sample has been drawn from the normal
population with mean =100 and S.D. = =8

Alternative Hypothesis, H1: 4 = 100 (Two-tailed).

L. L. X — U
Test Statistic. Under Ho, the test statistic is: £ = - ~N(0.1)
i

(Since n is large.)

205 Lo g
/\/400
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Since |z|> 1496, i.e the calculated value of Z is greater that its critical
value (|z|>1.96) we reject the null hypothesis and conclude the sample has not

been drawn from the normal population with mean 100 and S.D. = 8.

11.5 TEST OF SIGNIFICANCE FOR DIFFERENCE OF MEANS

Let us consider two independent large samples of sizes n; and n, from

two populations with means 4, and u, and variances o2 ando? respectively. Let

X, and x, be the corresponding sample means Then, since sample sizes are

large,
X; ~ N(uy,01 /) and X, ~N(up,05/n,)
Also X, -x,, being the difference of two independent normal variates is

2 2
also a normal variate with mean -y, and variance Z*+22 The value of Z
m

(S.N.V.) corresponding to( x; - x,) is given by:

_ (X, —X) - E(X;, — X,) :(Yl — %) — (g — ) - N(O 1)
S.E(X —X,) \/c;f+c;§ ’

Under the null hypothesis, Ho:u=u, i.e., there is no significant

difference between the sample means,

Thus under Ho: 1, = u,, the test statistic becomes (for large samples),

7 = M ~ N(O,l)

2 2
6 o

o1, Oz
n Ny
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If ¢2=c2= &%, ie. if the samples have been drawn from the

populations with common S.D. a, then under Ho: 1, = u,

Remark: 1.If ois not known, then its estimate based on the sample

variances is used. For large samples, the following estimate of &2 is used

52 = n1312 + nzsg
nr+n2

2.1f 62 # c2and o,and o, are not known, then they are estimated from

sample values, for large samples we use

6=S’~s? and 65=S5%s;

7 — M ~ N(O,l)

2 2
S S

o |51 S2
n,. Ny

11.6 EXAMPLES BASED TEST OF SIGNIFICANCE FOR DIFFERENCE OF TWO

MEANS

Example: The means of two single large samples of 1,000 and 2,000
members are 67.5 inches and 68.0 inches respectively. Can the samples be
regarded as drawn from the same population of standard deviation 2.5 inches?

(Test at 5% level of significance.)
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Sol. In usual notations, we are given: n1=1,000, n, = 2,000, x; = 67.5

inches, x,=68.0 inches.

Null hypothesis, Ho 14 = 1, and o = 25 inches, i.e., the samples have been
drawn from the same population of standard deviation 2.5 inches.

Alternative hypothesis H, : u # u,

Under Ho the test statistic is

(X1 —X31) _ N(O,l) or 7 — 67.5-68.0 _ 51

1 1 1 1
o=+ 25| ~ 4
n, n, 1000 2000

Conclusion. Since |z|>3,, the value is highly significant and we reject

Z =

the null hypothesis and conclude that samples are certainly not from the same
population with standard deviation 2.5.

EXAMPLE : in a survey of buying habits, 400 women shoppers are
chosen at random in super market ‘A’ located in a certain section of the city.
Their average weekly food expenditure is Rs. 250 with a standard deviation of
Rs. 40. For 400 women shoppers chosen at random in super market ‘B’ in
another section of the city, the average weekly food expenditure is Rs. 220 with
a standard deviation of Rs. 55. Test at 1% level of significance whether the

average weekly food expenditure of the two populations of shoppers are equal.
Solution, in the usual notations, we are given that

n =400  X,=250 s, =40
n,=400  X,=220  s,=55

Null hypothesis, Ho 14 =, I1.€., the average weekly food expenditures of
the two populations of shoppers are equal.

Alternative hypothesis H, : u = u, (Two-tailed)
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Test Statistic. Since samples are large, under Ho, the test statistic is:

7 :M~N(O,l)

2 2
6 o©

o1, 0
n

Since o?and o2, the population standard deviations are not known, we

can take for large samples «2=s,? and o2 = s, and then Z is given by:
2 g y

S _ (X12—X2)2 _ 2502‘220 _ =882~N(01)
st st J(40> , (59
n n, V400 400

Conclusion. Since |z|is much greater than 2.58, the null hypothesis ( ;=
u,) is rejected at 1% level of significance and we conclude that the average

weekly expenditures of two populations of shoppers in markets A and B differ
significantly.

11.7 SELF ASSESSMENT QUESTIONS

Question No:-1 Under what circumstances can the normal distribution be
used to find confidence limits of the populations mean?

Question No:-2 On the basis of a random sample from a normal
population with a known variance 2, obtain 99% confidence limits for the
population mean u. What will be the confidence limits, if the variance is

unknown?

Question No:-3 The manufacturer of television tubes knows from past
experience that the average life of a tube is 2,000 hours with a standard
deviation of 200 hours. A sample of 100 tubes has an average life of 1,950
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hours. Test at the 0.05 level of significance if this sample came from a normal
population of mean 2,000 hours.

State your null and alternative hypotheses and indicate clearly whether a
one-tail or a two- tail test is used and why? Is the result of the test significant?

Question No:-4 A sample of 100 items, drawn from a universe with mean
value 64 and S.D. 3, has a mean value 63.5. Is the difference in the means
significant? What will be your inference, if the sample had 200 items?

Question No:-5 A sample of 400 individuals is found to have a mean
height of 67.47 inches. Can it be reasonably regarded as a sample from a large
population with mean height of 6739 inches and standard deviation 1.30
inches?

Question No:-6 A random sample of 400 is taken from a large number of
coins. The mean weight of the coins in the sample is 28.57 gms and the s.d. is
1.25 gms. What are the limits which have a 95% chance of including the mean
weight of all the coins?

Question No:-7 : A random sample of 110 days shows an average daily
sale of Rs 60 with a s.d. of Rs 10 in a particular shop. Assuming a normal
distribution, construct a 95% confidence interval for the expected sale per day.

Question No:-8 Throw light on the need of the testing of hypothesis.

Question No:-9. Discuss a hypothesis. What types of hypotheses do you
know ? Discuss each of them.

Question No:-10.The yield of two strains of a crop was found to be as
given below:

Strain1 | 15.1, 20, 15, 38.7, 9, 123, 17, 36.5, 36

Strain2 | 13.8, 19, 12, 9.04, 7.6, 19, 29, 34.1, 18.08, 19.2, 16

Test whether the mean yields of the two strains in general are equal.
Perform the test at o= 0.05.
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Unit 3 Lesson NO.12

NEYMAN-PEARSON LEMMA

Structure:

12.1 Introduction and objectives
12.2  Derivation of N P Lemma

12.3 Examples based on N P Lemma

12.4  Self assessment Questions

12.1 INTRODUCTION AND OBJECTIVES

In statistics, the Neyman—Pearson lemma, named after Jerzy
Neyman and Egon Pearson. The N-P lemma tells us that the best test for a simple
hypothesis is a likelihood ratio test. While performing test of significance for
simple null versus simple alternative it provides most powerful test at the level of
significance. In practice, the likelihood ratio is often used directly to construct
tests. However it can also be used to suggest particular test-statistics that might be
of interest or to suggest simplified tests for this, one considers algebraic
manipulation of the ratio to see if there are key statistics in it related to the size of
the ratio (i.e. whether a large statistic corresponds to a small ratio or to a large
one).

12.2 DERIVATION OF N P LEMMA

Let wbe a critical region of the size @ and k>0 be a constant such that

m:{x eS: F(x,6,) > k}
f(X,0)

:m:{XES:i>k} R ()

Lo
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andE:{XGS:%Sk} ........................ (ii)

0
Where L;and L,are the likelihood functions of the sample observations
X = (X{,X,,....X,,) under H; and Hjrespectively and wis the most powerful
critical region of the test hypothesis H,:6=0, v/s H;:6=0;
Proof: We are given

PIxewo/Hy]l=a T (1 1))

Power of the region

P[xew/H;]= [L,dx =1-8 SRR (1Y)

(say)

Now in order to establish the lemma, we have to prove that there exists no
other critical region of size less than equal to ¢ which is more powerful than @

Let @, be another critical region of the size o, <o and its power is 1-f3,

So that

Plxew, /Hyl=a; = [L,dx

@

(V)
P[xew,/H,]=1-p; = [L,dx RN 17/ )|

Now we have to prove that
1-B=>1-,

Let o=AUC and o, =BuUC (C may be empty i.e ®andw, may be

disjoint) as shown in the figure
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Ifo, <o then we have

[Lodx <[Lodx

@

= [Lodx < [Lodx = [Lodx <[L,dx
BuC AuC B A

or [Lodx>[Lodx ..o (vi)
A B

Since Ac o, () = [Ldx>k[Lydx >K[Lydx
A A B

I D)}
[using (vi)]

Now (ii) also implies that  [L,dx < k[L ydx

This result also holds for any subset of @ sayono, =B

Hence [Lidx <k[Lydx < [L,dx [Using (vii)]
B B A

Now adding [ L,dx to both sides we get
C

[L,dx < [L,dx =1-B>1-B,

(O]}
Hence the lemma.
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12.3 EXAMPLES BASED ON NEYMAN PEARSON LEMMA

Example: 1fX ~N(uw,4)to test Hy :p=-1against H, :p=1based on the
sample of size 10 from the population whose critical region

X; +2X, +3X5 +...+10%;, = 0.What is the size ¢ and power (1— ) of the test.
Solution: critical region @ = X; +2X, +3X3 +...+10X,, 20
Let u=X; +2X, +3X5+...+10X,,  since X;'Sare i.i.d. N(u,4)
then u ~ (5511,3856%) = u ~ N(551,385x 4) = N(5511,1540)
The size « of the critical region is given by
oa=P(xXewn/H,) = P(u=0/H,)
Now under Ho p=-1

u-E[u] _u+55

Gy 41540

u ~ (-55,1540) and we have Z =

under Hy, when u=0

_55 _
Z =594 94pg =14015

o =P(Z >1.4015) = 0.5— P(Z <1.4015) =0.5-0.4192=0.1808  (from

normal probability tables)
Now power of the test is

1-p)=P(xew/H)=P(u>0/H,)
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underH, :p=1,u ~ (551540)
_-55 - _
- Z= 49.2428 = -1.4015 and

(1-B)=P(Z>-1.4015) = 0.5-P(-1.4015< Z <0) + 0.5

=0.4192 +0.5=0.9192

. 1 -2
Exercise: If X has a p.d.f. of the form f(x,0) =6e 2 0<x<x,0>0=0
otherwise

To test H,:06=2againstH,:0=1use a random sample of size 2 and

define critical region w={x,,X,,X, + X, >9.5}. Find a.andp.
Soln: @={x,,X,,X; +X, > 9.5}
Now a=P(Xx e @/Hg)=P{X; +X, 29.5/Hy}  ..coooiiieenn (D)

In sampling from exponential distribution

20 2
EZiXi ~ Xén) = u :E(Xl +X5) ~ %4
=

a=P E(xl +X3) Z§X9-5/Ho}:P[Xi 29.9]

a=0.5
Power of the test is given by

(1-B)=P(x e o/H,) =P[(x; + X,) > 9.5/H,]

:P[g(xl +X,) 2§x9.5/H1}=P[Xi 219]

163



Example: Use Neyman-Pearson lemma to obtain the region for testing
6 =6,against 6 =6, >6,andd =@, >0, , in the case of normal population N(0,c5?)

where &2 is known. Hence find the power of the test.

Soln. L= Hf(x,,e) (G\/_]n exp{ 62Zl(x i —0) }

Using N-P lemma best critical region is given by

1 n 2
exps——— 2. (X; -0
5 ool L $00-07]

G i=l

:»epo . 1>2—i<xi—eo>2H2k

G i=1
== (92 e)+ (6, G)Zx log k

2 2 2
— %(0,-0,) > Z_logk + 2L %)
n

Case (i) if 6; >0,then BCR is determined by the relation (right tailed test)

2
ys O _logk | (0, +6o) = X > A (say)
n (6,-6,) 2
BCR is o={X:X>L} N ()|

Case (ii) If 6, < 6,then BCR is determined by the relation (left handed test)
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2
logk N (6, +6,)

c
X< —. =X\, (sa
N (0,-6,) 5 , (say)

Hence BCRis w={X:X<A,} N (1)
The constantsA, and, are so chosen as to make the probability of each

of the relation (i) and (ii) equal to when His true.

2
Now sampling distribution of xwhen H;is true is (Gi,c—),(izo,l).
n
Therefore the constants 2,and 2, are determined from the relations:

PX>X;/Hy)=0a andP(X <X, /Hy)=a

P(X>X,/Hy) =P b@ =a ;Z~N(0))
7
37\2_—60220( :>7\,1=90+%Za
n
7
e (i)

Where z, ids the upper « -point of the standard normal variate given by
Pl[Z<z,] =

P szé;eo =1-a
Jn
:>7‘2_e°=21_a :>k2:60+%21a N (1Y)
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Power of the test

1-B=P(Xew/H,)=P(X>1,/H,) = P[zz@]

Jn

=P[Z >0, +inza ~0,]

N

-p Zzza—el_% f8>6,
T4

=1-P[Z<X;]1=1-¢[A;] Similarly in the case of (ii)

2 =0 prz <0, +-27, , —6,] using (iv)
S Vn
/\/n

=P|Z <2, ,+% ‘% S
T

Eqg. (i) and (ii) provide BCR for testing H,:6=06,Vv/s H, :0 =06, provided

1-B =P(X2%,/H,)=P[Z<

0, >0, in the first case and 0, <0, in the second case.

Thus BCR for testing Hy,:0=0,v/s H;:6=0,+c ;c>0 will not serve

as BCR for testing H, :0=0,v/s H;:6=6, —-c ¢>0.

Hence in this problem no UMP test exists for testing simple hypothesis
Hy:0=0,v/s H;:0+0,

Example::Show that for a normal population with mean zero and variance

o?the BCR for testing H, :6 =, V/s H, :c =5, is of the form
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n
Yx?<aa  for oy>0, and Yx*<bo  for o, <o,
= i=L

2
show that the power of the BCR when o, >o; is F{G—g ,xf,n}where
O3

x%,n is the lower 100¢% and F(.)is the density function of 2 wi8th n-degrees of

freedom.
Soln: According to N P Lemma BCR is given by % > K or

k

—_— = Ao (sa
L, a. (say)

{Gf_cg}z)(? <LogAa _n|og{ﬂ} (*)

Go
When o, <o, BCR from (*)

2

2
> X2 < {LogAa -n Iog{ﬂﬂ% =ao (say)

Go ][00 01

i.e., o=[x:Yx?<aa] ;forc; <o,
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When o; > o, BCR from (*)

2 2
>xZ> {LogAa— nlog{ﬂﬂ% =bo (say)
Gp ||Og — Oy

i.e., o=[x:Yx?>ba] ;forc; >0,
The constants ao. and bou are so chosen so that size of critical region is «

P[> x? <ao]=a under H,

2

2X; _aa | 2 _ao |

or P|==-<—|=a orPl yn<— |=a
GO GO 0

aa 2 2.2
Sli?])(a 38.0(:(?0)(g

0 n n

where Xi is the lower 100a% of chi-square distribution with n degrees of

n

freedom given by

F{xzﬁxi}:a
n

Hence BCRH,:c =0, V/s H,:c =0, (<oy) iso=[x:> x? Sogxé]

n

By definition power of the test is
1-B=P(x>w/H,) = P[Ex2 <aa/H, |
_Plilez <aa]P|iin2 < 2 /H ]
P T2 22 |7 T 2 S%Xan/To

GO (e}

(&)
0 0
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2 Aa,n
G, G,

2 2
:P{—z)z(‘ < 90,2 /Hl}
12.4 SELF ASSESSMENT QUESTIONS

Question No 1 Explain the concept of the most powerful tests and discuss
how the Neyman-Pearson lemma enables us to obtain the most powerful crsitical

region for testing a simple hypothesis against a simple alternative.

Question No 2 State and prove Neyman-Pearson Fundamental Lemma for
testing a simple hypothesis against a simple alternative.

Question No 3 State Neyman-Pearson Lemma. Prove that if @ an MP

region for testing
Ho: 06=0,=0against H1: 6 =0,

then it is necessarily unbiased. Also prove that the same holds good if. @
is an

UMP region.
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Unit 4 Lesson 13

SMALL SAMPLE TESTS

Structure:

13.1 Introduction

13.2  Objectives

13.3  Concept of small sample tests

13.4 t-Test of significance for Single Mean

13.5 Assumption for Student’s t-test

13.6 Examples based on t-Test of significance for Single Mean

13.7  Self Assessment Questions

13.1 INTRODUCTION

In a test of hypothesis, a sample is drawn from the population of which the
parameter is under test. The size of sample varies since it depends either on
experimenter or resources available, moreover, the test statistic involves the
estimated value of the parameter which depends upon the number of observations,

So the sample size play a very important role in testing of hypothesis.

When the sample size is small , such hypothesis testing can be achieved by
using t-test, discovered by W.S. Gosset in 1908. He derived the distribution to
find an exact test of a mean by making use of estimated standard deviation, based
on a random sample of size n. R.A. Fisher in 1925 published that t-distribution
can also be applied to the test of regression coefficient and other practical
problems. In the present lesson we will learn to use the t test for the equality of

single mean also the related confidence interval for population mean .
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13.2 OBJECTIVES

The main objectives of this lesson are

1.

To learn how to use samples to decide whether a population

possesses a particular characteristic

To determine how unlikely it is that an observed sample could
have come from a hypothesized population.

To understand how and when to use t distribution for testing

hypotheses about population mean.

To learn when to use one- tailed tests and when to use two-tailed
tests while testing the hypothesis for equality of single mean.

To understand the basic Concept of small sample tests

13.3 CONCEPT OF SMALL SAMPLE TESTS

In a test of hypothesis, a sample is drawn from the population of which the

parameter is under test. The size of sample varies since it depends either on

experimenter or resources available, moreover, the test statistic involves the

estimated value of the parameter which depends upon the number of observations,

So the sample size play a very important role in testing of hypothesis. For large

samples (n>30) almost all the sampling distributions can be approximated to the

normal, probability curve. However for small samples such hypothesis testing can

be achieved by using t-test, F-test Chi-square test, Fisher’s Z transformations etc.

13.4 t-TEST FOR SINGLE MEAN

Suppose we want to test
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() If a random sample x; (i = 1, 2.... n) of size n has been drawn from

a normal population with a specified mean, say u,or

(i) If the sample mean differs significantly from the hypothetical value

w, Of the population mean.

Under the null hypothesis, Ho:

() The sample has been drawn from the population with mean , or

(i) There is no significant difference between the sample mean and the

population mean g,

The statistic t = XH0 follows Student’s t-distribution with (n-1) d.f

YA

n n
where Y=£in and s? =le(xi —X)? is an unbiased estimate of 6°
Ni- —1lia

To decide about the acceptance or rejection of null hypothesis we now
compare the calculated value of |t| with the tabulated value at certain level of

significance a.. If calculated |t |>tabulated t, null hypothesis is rejected and if
calculated |t|< tab. t, Ho may be accepted at the level of significance adopted for
(n-1) degree of freedom.

In many situations we may have limited data about the population so that
we are required to estimate the confidence interval for the population mean pwith

the help of a small sample.

In such cases we can use the estimating methods outlined below provided
the population is normal.

Let us assume that the population is normal. Then we have to see whether
the standard deviation of the population is known. If it is, then we can proceed as
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in the case of large samples provided we use c in computing the confidence
interval,

The confidence interval will be [X +Z]

If the population standard deviation is not known. In such a case we use
the t distribution instead of the normal distribution.

The 95% confidence limits for population mean is given by

X+1t,05S/+/N where X +1t,,S/~/n is the upper confidence limit

And X —t,,sS/~/n is the lower confidence limit

Similarly 99% confidence limits for population mean is given by

X +t,,S//n

Where degrees of freedom is (n -1). (This is because we have lost one

degree of freedom by estimating o using the n sample values.)

13.5 Assumption for Student’s t-test.

The following assumptions are made in the Student’s t-test

(1) The parent population from which the sample is drawn is normal.

(if) The sample observations are independent, i.e., the sample is random.
(iii) The population standard deviation o is unknown.

FOR CONFIDENCE INTERVAL

We can now prepare a flow chart for estimating a confidence interval for

L, the population parameter
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n>30

Use normat distribution
confidence interval is

itz@%) ar i'tz(;ns,-)

Is population
Yes normal, or at No
east
symmetrical
& having a
unigue mode?

Yas
Beyond the
curricuium
Use narmal distribution 7 Use 1 distribution with -1
confidence interval is degrees of freedom.

% :26%) %ee(S)

13.6 EXAMPLES BASED ON T-TEST FOR SINGLE MEAN

EXAMPLE:-A random sample of size 11 is selected from a symmetrical
population with a unique mode. The sample mean and standard deviation are 200
and 30 respectively. Find the 90% confidence interval in which the population
mean p will lie.

Here, X =200 s=30 n=11

Degrees of freedom =n-1=11-1=10

If we refer to the t table we see that for 10 degrees of freedom, the area in
both tails combined is 0.10 or 10%, when t = 1.812.

Hence, area under the curve between X-—t(s/+/n)and X+ t(s/+/n)is

90% whent =1.812.

174



Hence, we are 90% confident that the population mean lies in the interval
183.61 to 216.39.

Example :-A cinema hall has a cool drinks fountain supplying Orange and
Colas. When the machine is turned on, it fills a 550 ml cup with 500 ml of the
required drink.

The manager has two problems on hand.

i. The clients have been complaining that the machine supplies less than
500 ml.

ii. The two colas are supplied by two different manufacturers, each

pressurizing him to drop the other supplier. Should he drop one?

A random sample of size 16 is taken with X=499 ml. and n = 16, VQC) is
unknown but the sample variance 1.96 (ml)2.

Case |

Suppose the manager wants to minimize customer complaints. We may set

up the test as follows:
H,:u=500 v/s H;:u<500

Under the null hypothesis our test statistic is

_X-p, X-500 X-500 4.99—500

TS/ 14 035 035
AT

=-2.857

t

follows Student’s t-distribution with (n-1)=15 d.f

n n
where i:iz x, and s® =le(xi —%)? is an unbiased estimate of &2
—di

i-1
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This is a left tailed test. But the critical point is being obtained from the t
tables.

Since n = 16, we need to look at the t;5 distribution. If o= 5%, the critical
point is -1.753. (Since tables indicate that P(—I .753 <t;5 < 1.753) =90%)

! Acceptance region
et e

Rejection
region !

-l

-1.75%

Critical region t;s <—1.753

Since the observed value —2.857 <—1.753.
Therefore HO is rejected.

Case 2

Suppose the manager ignores customer’s complaints and instead wants to
control the volume. That is, on an average, he does not want an excess outflow.

We may set up the test as follows.
H,:n=500 v/s H;:n>500
Under the null hypothesis our test statistic is
_ X—p, _X-500
i s
X —500 _ 4.99-500
0.35 0.35

t

=-2.857

follows Student’s t-distribution with (n-1)=15 d.f
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This is a right tailed test. The tabulate value of t obtained from the t tables
for 15 degrees of freedom at oo =5% is 1.753 .

So critival region is ty5> 1.753.

Acceptance region |

A
Y
4

Rejection
region

Since —2.857 < 1.753, we accept Ho
Case 3

Suppose, we combine case 1 and case 2. That is, the manager intends to
minimize customer complaints and does not want an excess outflow, we may set

up the test as follows.
H,:u=500 v/s H;:u=500
Under the null hypothesis our test statistic is
_ X-py X-500 X-500 4.99-500

TS/ 14 035 035
VARRAT:

=-2.857

t

follows Student’s t-distribution with (n-1)=15 d.f

This is a two tailed test. The tabulate value of t obtained from the t tables

for 15 degrees of freedom at oo =5% is 1.753 .
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Acceptance
region

Rejection

region : region
0.05 of 0.05 of

i
!
i
|
i Rejection
|
[
|
1

area

ar

-1.753) 0 1+1.753

Critical region | t | > 1.753

Since | —2.857 |>1.753 or we can say —2.857 lies in one (left) of the
rejection regions, we reject Ho.

Remark:-If we use the t distribution for a one-tailed test, we need to
determine the area located in only one tail. So to find the appropriate t value for a
one-tailed test at a significance level of say 0.05 with 15 degrees of freedom, we
would look under 0.10 column opposite the 15 degrees of freedom row. This is
true because the 0.10 column represents 0.10 of the area under the curve contained
in both the tails combined, and so it also represents 0.05 of the area under the

curve contained in each of the tails separately.

Example: A machinist is making engine parts with axle diameters of
0.700 inch. A random sample of 10 parts shows a mean diameter of 0.742 inch
with a standard deviation of 0.040 inch. Compute the statistic you would use to
test whether the work is meeting the specifications. Also state how you would

proceed further.

Solution. Here we are given: 1 =0.700, X=0.742 s$=0.040 and n=10
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Null Hypothesis, Ho : u= 0.700, i.e., the product is conforming to

specifications.

Alternative Hypothesis, H; : 1= 0.700
Test Statistic. Under HO, the test statistic is:

_X—Hg _ X—lg

= = foll Student’s t-dist." with (n-1) d.f
t7 7 ollows Student’s t-dist.” with (n-1)
Jn vn-1
e (0.742-0.700) — _315
0.04y
NG

How to proceed further: Here the test statistic ‘t” follows Student’s t-
distribution with 10-1 = 9 d.f. We compare the calculated value with the tabulated
value of t for 9 d.f. and at certain level of significance, say 5%. Let this tabulated

value be denoted by to.

(1) If calculated ‘t’, viz., 3.15 > to, we say that the value of t is significant.

This implies that X differs significantly fromx and Ho is rejected at this level of

significance and we conclude that the product is not meeting the specifications.

(ii) If calculated t < to, we say that the value of t is not significant, i.e.,
there is no significant difference between X and to. In other words, the deviation (
X-u) is just due to fluctuations of sampling and null hypothesis Hy may be
retained at 5% level of significance, i.e., we may take the product conforming to
specifications.

Ex: The mean weekly sales of soap bars in departmental stores as 146.3
bars per store. After advertising campaign the mean weekly sales in 22 stores for a
typical week increased to 153.7 and showed a standard deviation of 17.2. Was the

advertising campaign successful?
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Solution. We are given: n=22, X=153.7,s=17.2.

Null Hypothesis. The advertising campaign is not successful, i.e., Hou =

146.3

Alternative Hypothesis, Hi: 1> 146.3 (Right-tail).

X~ o

n

Test Statistic. Under Hg, the test statistic is : t = follows Student’s

t-dist.” with (22-1) d.f
 153.7-146.3

(17.2)721

Conclusion. Tabulated value of t for 21 d.f at 5% level of significance for

Or t =9.03

single tailed test is 1.72. Since calculated value is much greater than the tabulated
value, it is highly significant. Hence we reject the null hypothesis and conclude
that the advertising campaign was definitely successful in promoting sales.

Examples: A random sample of 10 boys had the following 1.Q.’s : 70, 120,
110, 101, 88, 83, 95, 98, 107, 100. Do these data support the assumption of a
population mean 1.Q. 100 ? Find a reasonable range in which most of the mean

1.Q. values of samples of 10 boys lie.

Solution. Null hypothesis, Hy : The data are consistent with the

assumption of a mean 1.Q. of 100 in the population, i.e., x = 100.
Alternative hypothesis, Hy: = 100

Under HO, the test statistic is
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Where X and s° are to be computed from the sample values of 1.Q.’s.

CALCULATIONS FOR SAMPLE MEAN AND S.D

X X-X i (X =)
=
70 -22.7 739.84
120 22.8 519.84
110 12.8 163.84
101 3.8 14.44
83 92 84.64
83 -14.2 201.64
95 -2.2 4.84
08 0.8 0.64
107 9.8 96.04
100 2.8 7.84
Total 972 1833.60
Here
=22 _970and  S? :ii(xi —X)? _ 183360 _ 503 73
10 n-14 9

_lo72-100 28 _ 28 _ .,
J203.73/10 /2037 4514
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Tabulated to 05 for (10-1), i.e., 9 d.f. for two-tailed test is 2.262.

Conclusion. Since calculated t is less than tabulated to s for 9 d.f., Ho may
be accepted at 5% level of significance and we may conclude that the data are

consistent with the assumption of mean 1.Q. of 100 in the population.

The 95% confidence limits within which the mean 1.Q. values of samples
of 10 boys will lie are given by

X +1t005S/+/N =97.242.262x4.514 = 97.2+10.21=107.41 and 86.99

Hence the required 95% confidence interval is [86.99, 107.41].

Ex: The heights of 10 males of a given locality are found to be 70, 67, 62,
68,61, 68, 70, 64, 64, 66 inches. Is it reasonable to believe that the average height
is greater than 64 inches ? Test at 5% significance level assuming that for 9
degrees of freedom P (t> 1.83) =0.05.

Solution. Null Hypothesis, Ho: z = 64 inches

Alternative Hypothesis, Hi: > 64 inches

X 70 67 62 68 61 68 70 64, 64 66 Total 660

(x-x) [4 1 42 5 2 4 2 20

(X—Y)Z 16 1 16 4 25 4 16 4 4 0 90
Here
x=ZX 660 and S? :Li(xi -X)? LT,
N 10 n-1i3 9
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-~ 4
Under Hog, the test statistic is: t— b _66-6

\/s / ~J10/10

which follows Student’s t-distribution with 10-1 = 9 d.f. Tabulated value
of t for 9 d.f at 5% level of significance for single (right) tail-test is 1.833. (This is

the value to 10 for 9 d.f in the two-tailed tables)

Conclusion. Since calculated value of t is greater than the tabulated value,
it is significant. Hence Hy is rejected at 5% level of significance and we conclude
that the average height is greater than 60 inches.

EXAMPLE: A random sample of 16 values front a normal population
showed a mean of 41 <5 inches and the sum of squares of deviations front this
mean equal to 135 square inches. Show that the assumption of a mean of 43.5
inches for the population is not reasonable. Obtain 95 per cent and 99 per cent

fiducial limits for the same.
Solution;-We are given

n=16,

n
X=415inches  and Y (x;-X)?=135square inches
i-1

|415 435|

Conclusion:- Since calculated | t | is greater than 2.131, null hypothesis is

—==2.667
3

rejected

99% fiducial limits for population mean p is given

- S
X+ In
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X£to0s

oo%“m

:41.5i2.131xzz41.5i1.598 = 39.902 < n < 43.098

Similarly 99% fiducial limits for population mean is given by

X+t,,S//n
=415+2.947x3/4=4371and 39.29  39.29 < p < 43.098

13.7 Self assessment questions

1.

A random sample of size 12 taken from a population of size 64
with s.d of 3 inches. Check the assumption that population mean
height is 65 , also set up the probable limits for mean height of the
population.

A random sample of size 200 is taken from a large number of
coin. The mean weight of the sample of coins is 25.50 gms and s.d
of 1.21 gms. Construct 95% CI for mean weight of coin in the
population.

A random sample of 10 days shows an average daily sale of Rs.50
with a s.d of Rs.10 is taken from a large number of coin. The
mean weight of the sample of coins is 25.50 gms and s.d of 1.21
gms. Construct 95% CI for mean weight of coin in the population.

(&) Under what circumstances can normal distribution be used to
find confidence limit of population mean .

(b) When we use to construct confidence interval estimate of

population mean .

A random sample of size 10 taken from a normal population has
mean 40 with s.d of 12 inches. Check the assumption that
population mean height is 45 , also set up the 95% probable limits
for mean height of the population.

(Given t,,; =3.25 for 9d.f)
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Unit 4 Lesson 14

SMALL SAMPLE TESTS

14.1  Introduction

14.2  Objectives

14.3 t-Test for Difference of Means

14.4  Paired t-test for Difference of Means

14.5 Examples based on t-Test for Difference of Means and Paired t-test

14.6 t-test for testing the significance of observed sample correlation

coefficient

14.7 Examples based on t-test for testing the significance of observed sample

correlation coefficient

14.8  Self Assessment Questions

14.1 INTRODUCTION

When the sample sizes are small, there are two technical changes in our
procedure for testing the differences between means. The first involves the way
we compute the estimated standard error of the difference between the two sample
means. Here we base our small-sample tests on the t distribution, rather than the
normal distribution.

In the present lesson we have demonstrated how to use samples from two
populations to test hypotheses about how the populations are related , how
hypothesis tests for differences between population means take different forms
when samples are large or small. Further after the careful study of this lesson will
enable the learner to distinguish between independent and dependent samples
when comparing two means and to learn how to reduce a hypothesis test for the
difference of means from dependent .
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14.2  Objectives

1. To learn how to use samples from two populations to test
hypotheses about how the populations are related

2. To learn how hypothesis tests for differences between population

means take
different forms; when the samples are of small size

3. To distinguish between independent and dependent samples when

comparing two means

4. To learn how to reduce a hypothesis test for the difference of
means from dependent samples to a test about a single mean

5. To understand how probability values can be used in testing

hypotheses

14.3 t-TEST FOR DIFFERENCE OF MEANS.

Suppose we want to test if two independent samples x;, (i = 1,2 ...n;) and
Yy (= 1, 2, ..., np) of sizes n; and n, have been drawn from two normal

populations with means p, and u, respectively.
Under the null hypothesis (Hp) that the samples have been drawn from the
normal populations with meansp, and pie., Hoip,=p, or Holpy,-u, =0 and

under the assumption that the population variance are equal, i.e., o2 = csf,:cz

(say) but unknown, the statistic
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_ (7—7)—(quy)
S i+i
VN Ny

Under the null hypothesis Ho: 11, = u,, the test statistic is given by

t

~ U(n,n,2 &t « level of significance

Nnia
l nl nZ
and SZZ— X-—Y2+ V)32
n1+n2_2|:é( i ) JZ;;L(yJ y)

is an unbiased estimate ofs2 based on both the samples

By comparing the calculated value of |t |with its tabulated value for

(n, +n, —2)degrees of freedom at « level of significance ( usually 5% or 1%)

we either reject or retain the null hypothesis

14.4 PAIRED T-TEST FOR DIFFERENCE OF MEANS

This test is applicable only when the two samples are not independent and

the observations are taken into pairs. Let us now consider the case when

(i) the sample sizes are equal, i.e., n; =n, = n (say), and

(ii) the two samples are not independent but the sample observations are

paired together, i.e., the pair of observations (X, yi), (i=1, 2, ..., n) corresponds to

the same (ith) sample unit.

The problem is to test if the sample means differ significantly or not.
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For example, suppose we want to test the efficacy of a particular drug, say,
for inducing sleep. Let xiand y; ,(i =1, 2, ..., n) be the readings, in hours of sleep,
on the ith individual, before and after the drug is given respectively. Here the
observations are paired and dependent so we apply the paired t-test. Here we
consider the increments, di= x;-yi, (i=1,2, ..., n)

Under the null hypothesis, Ho that increments are due to fluctuations of
sampling, i.e., the drug is not responsible for these increments, the statistic

where  where Hzlidi and S° =%Z(di—a)2 is an unbiased
Ni1 n—-157

estimate of o2 follows Student’s t-distribution with (n-1) d.f.

Depending upon whether tc, is less than or greater than tabulated value of
at (n-1) degrees of freedom at « level of significance we may accept or reject the

null hypothesis.

145 EXAMPLES BASED ON T-TEST FOR DIFFERENCE OF MEANS AND

PAIRED T-TEST

EXAMPLE. Below are given the gain in weights (in kgs.) of pigs fed on
two diets A and B.

Gain in weight
Diet A: 25, 32, 30, 34, 24, 14, 32, 24, 30, 32, 35, 25
Diet B : 44, 34, 22, 10, 47, 32, 40, 30, 32, 35, 22, 35, 29, 22

Test, if the two diets differ significantly as regards their effect on increase
in weight.
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Solution. Null hypothesis, Ho u, =u, i.€., there is no significant
difference between the mean increase in weight due to diets A and B.

Alternative hypothesis, Hy u, = u, (two-tailed).

Diet A Diet B
X (x-X) (x-%) Y (y-y) (y-9)°
25 3 9 44 14 196
32 4 16 34 4 16
30 2 4 22 -8 64
34 6 36 10 -20 400
24 -4 16 47 17 289
14 -14 196 31 1 1
32 4 16 40 10 100
24 -4 16 30 0 0
30 2 4 32 2 4
31 3 9 35 5 25
35 7 49 18 12 14
25 -3 9 21 -9 81
35 5 25
29 -1 1
22 -8 64
>Xx =336 Yy =450
(x—X)* =380 (y-y)® =1410
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Here  n;=12, n,=15 n=16, 22@:28 and 7:4—50:30
12 15
St PR+ YAy -Y) | =716
n+n,-20i3 " P '
Under null hypothesis (Ho): t = (X=y), ~t(nin,-2)
s? 1+1]
n, Ny
So that t= 28.30 :\/1_0274 —=_0.609
71.6(1+1j '
12 15

Tabulated value of tp s for (12+15-2)=25 degrees of freedom is 2.06
Conclusion. Since calculated| t|is less than tabulated t, Ho may be

accepted at 5% level of significance and we may conclude that the two diets do
not differ significantly as regards their effect on increase in weight.
EXAMPLE: Samples of to types of electric light bulbs were tested for

length of life and following data were obtained:

Type | Type Il
Sample No n,=8 n,=7
Sample means X, =1234 X, =1036
Sample S.D.’s s, =36 S, =40

Is the difference in the means sufficient to warrant that type I is superior to

type Il regarding length of life?
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Solution. Null Hypothesis, Ho p, =u,i.e., the two types I and Il of

electric bulbs are identical.

Alternative Hypothesis, Hi:p, > p,, i.e., type | is superior to type II.
Test Statistic. Under Ho, the test statistic is

(X1 —X5),
t=—lZ2h g
1 1 (n+n,-2)

s | —+—

n n,

l ny . Ny .
Where s? :—{Z(Xﬁ -%)° +Z(ij -%,)?
=1 j=1

n+n,—2"4

1
= —[nlsf + nzszz]

- n+n,-2
1 2 2
= 8(36)“ +7(40)“ [ =1659.08 and
8+7—2[( ) ( )]
1234-1036 _ 9.39
1659[1+1j
8 7

Tabulated value of t for 13 df. at 5% level of significance for right
(single)-tailed test is 1.77.

Conclusion. Since calculated It” is much greater than tabulated value of t’,

it is highly significant and Hy is rejected. Hence the two types of electric bulbs
differ significantly.
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EXAMPLE: To test the claim that the resistance of electric wire can be
reduced by at least 0.05 ohm by alloying, 25 values obtained for each alloyed wire
and standard wire produced the following results

Mean Standard deviation
Alloyed wire 0.083 ohm 0.003 ohm
Standard wire 0.136 ohm 0.002 ohm

Test at 5% level whether or not the claim is substantiated.

Solution. Null Hypothesis, Ho n, —p, >0.051.e., the claim is sustained.
Alternative Hypothesis, Hi:p, —u, <0.05, left tailed test.

Under Hg, the test statistic is

t= (X1 —X3) — (11 —Hp)
n, Ny

_nys{+n,s5  25(0.003)% +25(0.002)°

~tn.n,-2 atolevelofsignificance

s? =
Where n,+n,-2 25+25-2
_ 0.000225+0.0001 _ 0.0000067
48
Sothat t= (0.083-0.136)-0.05 -0.103 14507

1 1) 000071
0.0000067 — + -~
25 25

The (critical) tabulated value of t for 48 d.f., at 5% level of significance for
left tailed test is - 12645.

Conclusion: Learner are advised to write the conclusion themselves.
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Example: In a certain experiment to compare two types of animal foods A

and B, the following results of increase in weights were observed in animals:

Animal number 1 2 3 4 5 6 7 8 Total
Increase in Food A 49 53 51 52 47 50 52 53 407
weight Food B 52 55 52 53 50 54 54 53 423

() Assuming that the two samples of animals are independent, can we
conclude that food B is better than food A ?

(i)  Also examine the case when the same set of eight animals were
used in both the foods.

Solution. Null Hypothesis, Ho : If the increase in weights due to foods A

and B are denoted by X and Y respectively, then Ho:n, =pi.e., there is no
significant difference in increase in weights due to diets A and B.
Alternative Hypothesis, Hi: p, <, (Left-tailed).

(i) If the two samples of animals be assumed to be independent, then we

will apply t-test for difference of means to test Ho. p, =p, and test statistic is

l l (n1+n2_2)
s |=—+—
n. Ny
where
2T 3(x—R)2+ Yy V) | =341
n1+n2 _l i=1 I J:l J .

193




and - 50.875-52.875 _ 917

341(1 1)
8 8

And t =Tabulated to o5 for (8 +8 -2) = 14 d.f for one-tail test is 176.

Conclusion. The critical region for the left-tail test is t <-1.76. Since
calculated t is less than-—1.76, Ho is rejected at 5% level of significance. Hence
we conclude that the foods A and B differ significantly as regards their effect on
increase in weight.

(i) If the same set of animals is used in both the cases, then the readings X
and Y are not independent but they are paired together and we apply the paired t-
test for testing Ho.

t=—— 9 Where d- lz and S? =1 3'(d, —d)?
87 nizs n-1 i-1
n
X 49 53 51 52 47 50 52 53 Total
Y 52 55 52 53 50 54 54 53
=Xy [-3 -2 -1 -1 -3 -4 -2 0 -16
d2 9 4 1 1 9 16 4 0 44
azlidi:‘_lﬁ:_z and S? =1.714
nia 8

I 2
\/s / T J17143/8 04629
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Tabulated to s for (8- 1) = 7 d.f. for one-tail test is 1.90.

Conclusion. the observed value of ‘t” is significant at 5% level of
significance and we conclude that food B is superior to food A.

14.6 T-TEST TOR TESTING THE SIGNIFICANCE OF AN OBSERVED SAMPLE

CORRELATION COEFFICIENT

If r is the observed correlation coefficient in a sample of n pairs of
observations from a bi-variate normal population, then Prof. Fisher proved that

under the null hypothesis, Ho: p =0, i.e., population correlation coefficient is zero,

the statistic

t= o Y2

follows Student’s t-distribution with (n- 2) d.f.

If the value of t comes out to be significant, we reject Hy at the level of
significance adopted and conclude that p =0, i.e., ‘r’ is significant of correlation
in the population. If t comes out to be non-significant, then Hy may be accepted
and we conclude that variables may be regarded as uncorrelated in the population.

14.7 EXAMPLES BASED ON T-TEST FOR TESTING THE SIGNIFICANCE OF

OBSERVED SAMPLE CORRELATION COEFFICIENT

EXAMPLE: (a) A random sample of 27 pairs of observations from a
normal population gave a correlation coefficient of 0.6. Is this significant of
correlation in the population?

(b) Find the least value of r in a sample of 18 pairs of observations from a
bi-variate normal population, significant at 5% level of significance.
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Solution. (a) We set up the null hypothesis, Ho: p =0, i.e., the observed
sample correlation coefficient is not significant of any correlation in the
population, under null hypothesis our test statistic is

t= —J(n 2) follows Student’s t-distribution with (n- 2) d.f.

V2-r?)

—3.75

WV }

Tabulated to 05 for (27-2) = 25 d.f. is 2.06.

Conclusion. Since calculated t is much greater than the tabulated t, it is
significant and hence Hy is discredited at 5% level of significance. Thus we

conclude that the variables are correlated in the population.

(b) Here n = 18. From the tables t0.05 for (18-2) = 16 d.f. is 2.12.Under
null hypothesis, Ho: p =0

t= —w/(n 2) follows Student’s t-distribution with (n- 2) d.f.

Va-r?)

In order that the calculated value of t is significant at 5% level of
significance, we should have

Va-r?) (@-r?)
= 16r?>(2.12)%1-r?) or  20.493r%>4.493
or 2> 2498 o192

20.493
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Hence | r |> 0.4682

EXAMPLE: A coefficient of correlation of 0.2 is derived from a random
sample of 625 pairs of observations. (1) Is this value of r significant ? (ii) What
are the 95% and 99% confidence limits to the correlation coefficient in the
population ?

Sol: under null hypothesis, Ho: p =0, the test statistic is

r

0.2
—  n-2)=———2
1/(1_r2) (n-2) 4 (1-0.04) (

Since d.f 625- 2 = 623, the significant values of t are same as in the case of

t= 625—2) =5.09

normal distribution, viz., t505=1.96 and tyo1 = 2.58. Since calculated t is much

greater. Write result accordingly

95% confidence limits to the correlation coefficient of population are

_r2
r+1.96S.E(r) =r+1964=")
Jn
0.96
0.2+1.96——=0.2+0.075=(0.125,0.275)
\625
and 99% confidence limits to the correlation coefficient in the population
are
0.2+2.58x% 0.9

5 =0.2+0.099=(0.101,0.299)

14.8 SELF ASSESSMENT QUESTIONS

Question No:-1Two independent random samples of sizes 8 and 6 are

drawn from normal population with unknown means , n, and p, and variances
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32 and 30 respectively. If the sample means are 68.1 and 60.4 respectively, Teat
for the equality of population means, find 95% confidence limits for the difference
of population means.

Question No:-2 Two independent random sample of size 8 and 6 are drawn
from two normal populations whose means and variances are unknown. If the
samples have means 28.3 and 20.8, and standard deviations 6 and 5 respectively,
find 95% confidence limits for the difference of population means. State the
necessary assumption. (Value oft for 12 d.f. is tp 25 = 2.18).

Question No:-3 Nine computer-components dealers in major metropolitan
areas were asked for their prices on two similar color inkjet printers. The results of
this survey are given below. At a= 0.05, is it reasonable to assert that, on

average, the Apson printer is less expensive than the HP printer?
Dealer 1 2 3 4 5 6 7 8 9
Apsonprice 250 319 285 260 305 295 289 309 275

HP price 270 325 269 275 289 285 295 325 300

Question No:-4 Sherri Welch is a quality control engineer with the
windshield wiper manufacturing division of Emsco, Inc. Emsco is currently
considering two new synthetic rubbers for its wiper blades, and Sherri was
charged with seeing whether blades made with the two new compounds wear
equally well. She equipped 12 cars belonging to other Emsco employees with one
blade made of each of the two compounds. On cars 1 to 6, the right blade was
made of compound A and the left blade was made of compound B; on cars 7 to
12, compound A was used for the left blade. The cars were driven under normal
operating conditions until the blades no longer did a satisfactory job of clearing
the windshield of rain. The data below give the usable life (in days) of the blades.

At o = 0.05, do the two compounds wear equally well?
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Car 1 2 3 4 5 6 7 8 9 10 11 12
Left blade 162 323 220 274 165 271 233 156 238 211 241 154
Right blade 183 347 247 269 189 257 224 178 263 199 263 148

Question No:-5 Ten soldiers visit a rifle range for two consecutive weeks.
For the first week their scores are: 67, 24, 57, 55, 63, 54, 56, 68, 33, 43 and during
the second week they score in the same order— 70, 38, 58, 58, 56, 67, 68, 72, 42,
38

Examine if there is any significant difference in their performance.
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Unit 4 Lesson 15

SMALL SAMPLE TESTS

Structure:

15.1 Introduction

15.2  Objectives

15.3  F-test for Equality of Two Population Variances
15.4  Shape of F-distribution and tabulated values
15.5 Hlustration

15.6 Examples

15.7  Self Assessment Questions

15.1 INTRODUCTION

F- Distribution is a very popular and useful distribution because of its
utility in testing of hypothesis about the equality of several population means, two
population variances and several regression coefficients in multiple regression etc.

As a matter of fact, F-test is the backbone of analysis of variance.

This distribution was discovered by G.W.Snedecor and named in the honor
of the Distinguish mathematical statistician Sir R.A Fisher. It may be recalled that
the t statistic is used for testing whether two population means are equal.
Whenever we are required to test for the case of more than two means, this can be
tested by comparing the sample variances using F distribution by the use of
analysis of variance technique which consist of “separation of variation due to a

group of
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causes from the variation due to other groups”. F ration is basically ratio of
between column variance and within column variance, having found F ratio we

can interpret it First, examine the denominator., which is based on the variance

within the samples. The denominator is a good estimator of &2 (the population
variance) whether the null hypothesis is true or not. What about the numerator? If
the null hypothesis is true, then the numerator, or the variation among the sample

means, is also a good estimate of o2 (the population variance). As a result, the
denominator and numerator should be about equal if the null hypothesis is true.
The nearer the F ratio comes to 1, then the more we are inclined to accept the null
hypothesis Conversely, as the F ratio becomes larger, we will be more inclined to
reject the null hypothesis and accept the alternative (that a difference does exist in
the effects of the three training methods).

In short ,when populations are not the same, the between-column variance
(which was derived from the variance among the sample means) tends to be larger
than the within-column variance (which was derived from the variances within the
samples), and the value of F tends to be large. This leads us to reject the null

hypothesis.

Summing up, F- distribution is a very popular and useful distribution
because of its utility in testing of hypothesis about the equality of several
population means, two population variances and several regression coefficients in

multiple regressions etc.

In fact this sampling distribution is widely used in different ways while

testing different null hypotheses about a variety of population parameters.

15.2  Objectives
The objectives of this lesson is
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e To introduce the F distribution and learn how to use them in statistical

inferences

e To recognize situations requiring the comparison of more than two

means or proportions

e To compare more than two population means using analysis of

variance

e To use the F distribution to test hypotheses about equality of two

population variances

15.3  F-test for Equality of Two Population Variances:

F- distribution is a very popular and useful distribution because of its
utility in testing of hypothesis about the equality of several population means, two
population variances and several regression coefficients in multiple regression. In
the present section we will use this test statistic t for Equality of Two Population
Variances

Suppose we want to Test

Q) whether two independent samples x;, (i=1,2 n;) and y;, (1 =1, 2
n,) have been drawn from the normal populations with the same

2
variance © (say), or

(i)  whether the two independent estimates of the population variance

are homogeneous or not.

2 2

Under the null hypothesis (Ho) that (i) o5 = o7 = o7,

I.e., the population variances are equal, or

202



(i)  Two independent estimates of the population variance are
homogeneous, the statistic F is given by

Sy
Where g1 %“(x- —X)?
X i
nl _1i—l
and SZ =—— Y (y; - y)’
y n2 _1]_:1 J

are unbiased estimates of the common population variance o obtained
from two independent samples and it follows Snedecor’s F-distribution with

(v,, v,) d,f. where v, =n, —1and v, =n, -1,

By comparing the calculated value of F obtained by using above formula
for the two given samples, with the tabulated value of F for (n;,ny) d.f. at certain
level of significance (5% or 1%), Hy is either rejected or accepted.

Proof:-

As under null hypothesis 6% =2 =c”
2 n.s2

. n,s 2S . . . )
Since % and Zy are independent chi-square variates with (n;- 1)
Cx oy

and (nz-1) d.f. respectively, follows Snedecor’s F-distribution with (n;-1, np-1) d.f.
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As a norm larger of two variances is taken along numerator and the

degrees of freedom corresponding to it is denoted by v,

If the calculated value of F is greater than its tabulated value for (n;- 1, n,-
1) degrees of freedom at o level, of significance we reject the null hypothesis

otherwise we may retain it.

15.4 SHAPE OF F-DISTRIBUTION AND TABULATED VALUES

Similar to Chi Square distribution, F distribution is also a family of
distributions. As the number of degrees of freedom varies, so is the shape of the
distribution. For small numbers of degrees of freedom the curve is skewed
extremely to the right and as the number of degrees of freedom increases the
distribution tends to become symmetrical. The degree of skewness for some of the

degrees of freedom is shown below.

YA\
(25,25) degrees of freedom

(5.5) degrees of freedom

(2.1) degrees of freedom

A
X
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In F distribution, we have two degrees of freedom as compared to one in
Chi Square distribution. The number of degrees of freedom is expressed as
(v1,v,) . Wherev, referring to number of degrees of freedom for the numerator
and v, representing the same for the denominator. From the F tables, the value of
the F statistic is obtained at the point of intersection ofv, and v, at the

corresponding level of significance. For the numerator we have to move column
wise whereas for the denominator, we move row wise. For this distribution also

the tables are given for the significance levels most often used.

15,5 ILLUSTRATIONS

Ilustration:-A Quality Control Engineer at Zen Automobiles wants to
check the variability in the number of defects in the cars coming from two
assembly lines A and B. When he collected data it was as shown below.

Number of Defects

Assembly_Line A Assembly Line B
Mean 10 11
Variance 9 25
Sample Size 20 16

Can he conclude that the assembly line B has more variability than line A?
Test the hypothesis at significance level of 5%.

Solution:-We set-up the hypothesis such that we do not have to test the
hypothesis at the lower tail of the distribution. The null and the alternative
hypothesis will be as follows:
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H,:02 =03 (Null Hypothesis: The number of defects has same
variability)

H, :c? > o35 (Alternative Hypothesis: The number of defects from the
assembly line B is more than that from line A)

Significance level = 5%.

Under null hypothesis We now calculate the F statistic

2
F:S—1:§:2.78

From the tables, at a significance level of 0.05, 5 degrees of freedom in the
numerator and 19 degrees of freedom in the denominator, the value of the F

statistic is 2.23. This is represented in the figure below.

Acceptance region

4
y

Since, the calculated value falls outside the acceptance region we reject the

null hypothesis.

Ilustration(two-tailed test): Two populations which are believed to have
same variance were taken. However, on examination of the samples it was found
that sample A (sample size 16) had a variance of 3.75 and for sample B (sample
size 10) had a variance of 5.38. Formulate an appropriate hypothesis and test it at

a significance level of 10% and state your conclusion.
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Solution: We are given that
n,=16 and s?=3.75
n,=10and s; =5.38

The hypothesis will be

H, :co? =3 (Null Hypothesis: Populations have the same variance)

H, :o? # o5 (Alternative Hypothesis: Populations do not have the same

variance)

Under null hypothesis our test statistic is

2
F=51_37_ggg7
s; 5.38

The number of degrees of freedom in the numerator is 16 - 1 = 15 and in
the denominator it is 10 - 1 = 9. Since we require both the limits, the limit F(15, 9,
0.05) is directly obtained from the tables. Its value is 3.01. Now how do we get the

value for the limit F(15, 9, 0.95), as at this level the values are not given in the

2 2 2
tables. Here also we take the inverse of S—é . The inverse of S—é will bes—g.
2 S, S
1
We know that F(n,d,a.) = —————
F(n,d,1-a)

where,
n is the degree of freedom in the numerator
d is the degree of freedom in the denominator

o is the significance level.
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2
The value of >2 will be 0.332.
S1

Both these values give our limits as shown in the figure below.

Acceptance
regicn

0.05 of
the area

0.332 0.607 3.01

Conclusion: Since the value of the calculated statistic falls in the
acceptance region, we conclude that the samples belong to two populations which

have the same variance.

14.6 EXAMPLES

EXAMPLE: Below given are the two random samples of sizes 12 and 15

respectively with values as given below
Sample-A 25, 32, 30, 34, 24, 14, 32, 24, 30, 31 35, 25,
Sample- B 44, 34, 22, 10, 47, 31, 40, 30, 32, 35, 18, 21, 35, 29, 22

Check the hypothesis that the samples came from the same normal

populations with identical variances

Solution Let us set the null hypothesis

H, :o? =3 (Null Hypothesis: Populations have the same variance)
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H, :o? # o5 (Alternative Hypothesis: Populations do not have the same

variance)
CALCULAION TABLE
Sample-A Sample- B
X (x-X) (x-%)° Y (y-y) (y-9)°
25 -3 9 44 14 196
32 4 16 34 4 16
30 2 4 22 -8 64
34 6 36 10 -20 400
24 -4 16 47 17 289
14 -14 196 31 1 1
32 4 16 40 10 100
24 -4 16 30 0 0
30 2 4 32 2 4
31 3 9 35 5 25
35 7 49 18 -12 14
25 -3 9 21 -9 81
35 5 25
29 -1 1
22 -8 64
¥X =336 (x-X)> =380 | 2y =430
(y -¥)* =1410
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Under the null hypothesis our test statistic is

It follows Snedecor’s F-distribution with (v,, v,) d,f. where v, =n, —1

and v, =n, —1.

1 & = 1 & _
Where S = _1Z(xi -X)? and S = _12(}’; —y)?
n -1 n, =L
, 1 & L, 1
Here S = D (%, —X)? == x380=234.54
n,-14 11
and S = ! i(y.—y)2 =ix1410=100 71
oon, -1 14 '
SZ
F=—= 10071 _ 59157 follows Snedecor's F-distribution with
S 34.54

X

(V2’V1 )

The tabulated value of F(14,11) at 5% level of significance is 2.72 which
is less that the calculated 2.9147 value so we reject the null hypothesis and
conclude that Populations do not have the same variance

EXAMPLE: In one sample of 8 observations, the sum of the squares of
deviations of the sample values from the sample mean was 84.4 and in the other
sample of 10 observations it was 102.6. Test whether this difference is significant
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at 5 per cent level, given that the 5 per cent point of F for ny = 7 and n, = 9

degrees of freedom is 3.29.

Solution:-Here

n,=8 n,=10 and I(y-y)*=102.6 and X(x-X)?=84.4

n,
SZ = ! Z(xi—i)2:84—'4:12.057
1 N 102.6
and S2=—"—S(y. -y)=—"=114
y nz_1J_Z=l(yJ y) 5

Let us make the following assumption

2 2 2
c$X

=0y, =c"i.e, the estimates ofo? given by the samples are
homogeneous.

Then the test statistic under null hypothesis is

2
F=2x 12057 ) 47

T2
Sy 11.4

Tabulated Foos for (7, 9) d.f is 3.29Since calculated F <Fy g5, Ho may be

accepted at 5% level of significance.

EXAMPLE:. Two random samples gave the following results

Sample No 1 2
Sample Size 10 12
Sample mean 15 14
Sum of squares of deviations from mean 90 108
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Test whether the samples come from the same normal population at 5%

level of significance.

[Given:F, (911) =290  F,,(119)=3.10and t,,.(20) =2.086, t,,(22)=2.07,]

Solution. A normal population has two parameters, viz., meanu. and

variance o?. To test if two independent samples have been drawn from the same
normal population, we have to test (i) the equality of population means, and (ii)

the equality of population variances. H, :p, =p, and o2 =o3

Null Hypothesis: The two samples have been drawn from the same normal
population, Equality of means will be tested by applying t-test and equality of

variances will be tested by applying F-test. Since t-test assumesc;? =2, we shall

first apply F-test and then t-test. In usual notations,

we are given:

n =10 n, =12 % =15%,=14and X(x-%)*=90
2(x, —X,)* =108

1 o 90
=g taX)' =5
1 108
and S2 = X,-X,)?="-=9.82
P a0 %) =
SZ2 10 N .
F=—=—-=1.018 follows F distribution with (n, -1,

S2 982

n, —1) degrees of freedom
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Tabulated Foos (9,11) = 2.90. Since calculated F is less than tabulated F, it
is not significant. Hence null hypothesis of equality of population variances may

be accepted.

t-test: under the null hypothesis our test statistic is

X, —X S
t= (X1 —X,) ~tn.n,-2 =ty ato levelofsignificance
of 1 1
Sl —+—
ng. n,
2 1 L o2, G < \2
Where  s°=———[ 3 (X, —X)“ + > (X, = X,)

15-14 1 1

= = = i85 =0.742
oo v ] Jog ]
10 12 60

Tabulated toq5 for 20 d.f. = 2.086.Since the calculated value of t is

less than its tabulated value se we accept the null hypothesis regarding the

equality of population means

Since both the hypotheses are accepted, we may regard that the given

samples have been drawn from the same normal population.

15.7 SELF ASSESSMENT QUESTIONS

QUESTION No 1: A random sample of 16 values from a normal
population has a mean of 41.5 inches and sum of squares of deviations from the
mean is equal to 135 inches. Another sample of 20 values from art unknown

population has a mean of 43.0 inches and sum of squares of deviations from their
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mean is equal to 171 inches. Show that the two samples may be regarded as
coming from the same normal population.

QUESTION No 2: The household net income from property and

entrepreneurship in France
And Germany. follows:
China: 15.0, 8.0, 3.8, 6.4,27.4, 19.0, 35.3, 13.6
Japan: 18.8, 23.1, 10.3, 8.0,18.0, 10.2, 15.2, 19.0, 20.2

Test the equality of variances of household net income in China and Japan

QUESTION No 3 Following data give the distribution of women ever
married by age.

Test whether the data have come from a normal population.

Age group No. of women
15—19 3
19—23 43
23—27 62
27—31 38
31—35 24
35—39 14
39—43 11
43—47 5
47—51 2
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QUESTION No 4 Two random samples taken from two normal
populations are as follows. Estimate the variances of populations and test that the

two populations have equal variances.

Sample I: 20, 16, 26, 27, 23, 22, 18, 24, 25, 19
Sample I1:17, 23, 32, 25, 22, 24, 28, 18, 31, 33,20, 27

QUESTION No 5 Given the following information about two samples
from two normal populations, n; = 10, s; = 1.97, n, =8 and s, = 3.21.

Can it be concluded that both the samples have come from populations

having the same variability.
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Unit 4 Lesson 16

SMALL SAMPLE TESTS

Structure:

16.1 Introduction

16.2 Objectives

16.3  Precautions about Using the Chi-Square Test
16.4  y?test for Inferences about a Population Variance
16.5 [Ilustrations

16.6  Examples based on y?test for Inferences about a Population Variance
16.7  y?*test for goodness of fit

16.8 Examples based ony ’test for Goodness of Fit Test.

16.9 4% Test of Independence of Attributes

16.10 Examples based on y? Test of Independence of Attributes

16.11 Self Assessment Questions

16.1 INTRODUCTION

We know how samples can be taken from populations and can use sample
data to calculate statistics such as the mean and the standard deviation. If we apply
what we have learned and take several samples from a population, the statistics we
would compute for each sample need not be the same and most probably would
vary from sample to sample.

Chi-square test is one of the most commonly used tests of significance.

The chi-square test is applicable to test the hypotheses of the variance of a normal
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population, goodness of fit of the theoretical distribution to observed frequency
distribution, in a one way classification having k-categories. It is also applied for
the test of independence of attributes, when the frequencies are presented in a two-
way classification called the contingency table. It is also a frequently used test in
genetics, where one tests whether the observed frequencies in different crosses

agree with the expected frequencies or not.

16.2 OBJECTIVES

Understanding of sampling distributions will enable the students to have
basic knowledge about the behavior of sampling distributions so that samples that
are both meaningful and cost effective can be taken, due to the fact that large
samples are very expensive to gather, decision makers should always aim for the
smallest sample that gives reliable results.

The knowledge of Chi-square test will acquaint the learners to test the
hypotheses of the variance of a normal population, goodness of fit of the
theoretical distribution to observed frequency distribution, in a one way
classification having k-categories. It is also applied for the test of independence of
attributes, when the frequencies are presented in a two-way classification called
the contingency table. It is also a frequently used test in genetics, where one tests
whether the observed frequencies in different crosses agree with the expected
frequencies or not. In short the main objective of this lesson is to

e To introduce the Chi Square distribution and learn how to use them in
statistical inferences

e To recognize situations requiring the use of Chi-square test

e To use Chi square test to check whether a particular collection of data
is well described by a specified distribution

e To see whether two classifications of same data are independent of
each other
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e To use Chi square distribution for confidence intervals and testing
hypotheses about a single population variance

16.3 PRECAUTIONS ABOUT USING THE CHI-SQUARE TEST

To use a chi-square hypothesis test, we must have a sample size large
enough to guarantee the similarity between the theoretically correct distribution

and our sampling distribution of the chi-square statistic. When the expected
frequencies are too small, the value of y2 will be overestimated and will result in
too many rejections of the null hypothesis. To avoid making incorrect inferences
from % hypothesis tests, follow the general rule that an expected frequency of

less than 5 in one cell of a contingency table is too small to use.When the table
contains more than one cell with an expected frequency of less than 5, we can
combine these in order to get an expected frequency of 5 or more. But in doing
this, we reduce the number of categories of data and will gain less information
from the contingency table.

This rule will enable us to use the chi-square hypothesis test properly, but
unfortunately, each test can only reflect (and not improve) the quality of the data
we feed into it. So far, we have rejected the null hypothesis if the difference
between the observed and expected frequencies—that is, the computed chi-square
value—is too large. In the case of the job-review preferences, we would reject the
null hypothesis at a 0.10 level of significance if our chi-square value was 6.251 or
more. But if the chi-square value was zero, we should be careful to question
whether absolutely no difference exists between observed and expected
frequencies. If we have strong feelings that some difference ought to exist, we
should examine either the way the data were collected or the manner in which
measurements were taken, or both, to be certain that existing differences were not

obscured or missed in collecting sample data.
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In the 1 860s, experiments with the characteristics of peas led the monk
Gregor Mendel to propose the existence of genes. Mendel’s experimental results

were astoundingly close

16.4  y?TEST FOR INFERENCES ABOUT A POPULATION VARIANCE

Suppose we want to test if a random sample x,,X, .....x, has been drawn

from a normal population with a specified variance o2 = 63 (say).

Under the null hypothesis that the population variance is ¢® = o3, the

statistic

follows chi-square distribution with (n -1) d.f.

By comparing the calculated value with the tabulated value of 2 for (n -
1) d.f at certain level of significance (usually 5%), we may retain or reject the null
hypothesis.

If the sample size n is large (>30), then we can use Fisher’s approximation

and apply Normal Test.

V22 ~NG2n-1,1)  sothat Z=+2¢% - (2n—-1) ~ N(0)

16.5  Hlustration

A psychologist after a survey of children with age below 5 years old

regarding the variability in their attention span finds that ¢=8 minutes. To
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convince herself that the attention span of six years old should be different from
that of five years old, she conducts another survey of 20 children and finds that the
sample variance as s°=28 minutes. What would be null and the alternative
hypothesis? At a significance level of o =5%, what is the probable conclusion

she would reach.
Solution:- We are given that n = 20 and s =28.
We would set up the hypothesis as follows:

Ho: o= 64 (Null Hypothesis: the population variance is equal to 64)

H1: 6% # 64 (Alternate Hypothesis: the population variance is not equal to
64)

Significance level =5%.

We observe that this is a two-tailed test and therefore we ought to look at
both the limits.

The value of the y?statistic is given by

=8.313

» (n-1s®  (20-1)(28)
!

()
At 19 degrees of freedom and a significance level of 5%, the values of y?

where 0.025 of the area will lie at both the tails is 8.907 and 32.852 respectively.
Since the calculated value of x2 does not fall in the acceptance region as shown in
the figure below, we reject the null hypothesis.

Therefore the conclusion she would reach is that the attention span of six
years old varies from that of the five years old.
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Acceptance
region

\4

8.313 8.907 32.852

2
16.6 EXAMPLES BASED ON X TEST FOR INFERENCES ABOUT A POPULATION

VARIANCE

EXAMPLE: It is believed that the precision (as measured by the variance)
of an instrument is no more than 0.16. Write down the null and alternative
hypothesis for testing this belief Carry out the test at 1% level given ii
measurements of the same subject on the instrument: 2.5, 2.3,24, 2.3, 2.5, 2.7,
2.5,26,26,27,25

Solution. Null Hypothesis, Ho: 6= 0.16  Alternative Hypothesis, H;: o*
>0.16

Under the null hypothesis, Ho: 2 = 0.16, the test statistic is:

n
2
, ns? =X g1gg1
x 0(2, 0(2, 0.16

=1.182

which follows »?2-distribution with d.f. n- 1= (11- 1) =10.

Since the calculated value of 4?is less than the tabulated value 23.2 of ;2
for 10 df at 1% level of significance, it is not significant. Hence Hy may be
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accepted and we conclude that the data are consistent with the hypothesis that the
precision of the instrument is 0.16.

EXAMPLE: Test the hypothesis that o= 10, given that s = 15 for a

random sample of size 50 from a normal population.

Solution. Null Hypothesis, Hp : o = 10.

2
X2 _ ns2 _ 50x 225 _1125
(o 100

If the sample size n is large (>30), then we can use Fisher’s approximation
and apply Normal Test.

J22 ~NG2n -1, 1) sothat  Z =422 - (v2n—1) ~ N(0,])

Z = /225 — (1/99) = 15 - 9.95 = 5.05 ~ N(0,1)

Since | Z | >3, it is significant at all levels of significance and hence Hy is

rejected and we conclude that ¢ =10

EXAMPLE : An owner of a company agrees to purchase the product of a
factory, if the produced items do not have variance of more than 0.5 mm? in their
length. To make sure of the specifications, the buyer selects a sample of 18 items
from his lot. The length of each item was measured to be as follows:

Length (mm)
18.57, 18.10, 18.61, 18.32, 18.33, 18.46, 18.12, 18.34, 18.57,
18.22, 18.63, 18.43, 18.37, 18.64, 18.58, 18.34, 18.43, 18.63
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Solution:-On the basis of the sample data, the hypothesis
Null Hypothesis, Ho:6?= 0.5 Alternative Hypothesis, Hi: 62> 0.5

Under the null hypothesis, Ho: 2 = 0.5, the test statistic is:

2

18
2. (X - X)?
yo = i=1

o
=)
We calculate 3 (X; —X)? = fo _Ni )

n

For the given data, > x{ =6112.64 Y x; =331.69

So that

2
inj )
w2 ?_(i _ _ (33169)
_Z;;L(Xi X) _;X' B 6112.64 T

=6112.640— 6112.125= 0.515

Thus

S (x, - %)?
y° =1 ~ 0'525 ~1.03

S
For a=0.05, y2for 17 degrees of freedom is 27.587. Since the

calculated value of y? is 1.03 which is not greater than 27.587, we accept the null

hypothesis, : 6?= 0.5 at o = .05. and we conclude that the buyer should purchase
the lot.

223



Example : Future Technologies Ltd. manufactures high resolution
telescopes. The management wants its products to have a variation of less than 2
standard deviations in resolution, while focusing on objects which are beyond 500
light years. When they tested their newly manufactured telescope for 30 times, to
focus on an object 500 light years away, they found that the sample standard
deviation to be 1.46. State the hypothesis and test it at a significance level of 1%.
Can the management accept to sell this product?

Solutio: We are given, n=30 and s = (1.46)°

We set up the hypothesis as follows:

Null Hypothesis, Ho: % = 4 (Null hypothesis: Population variance is equal
to 4)

Alternative Hypothesis, H;:o?<4 (Alternative Hypothesis: Population

variance is less than four)

Level of significance a.=1% We observe that this is a one-tailed test

Under the null hypothesis, Ho: 2 = 4, the test statistic is:

2o (n-1s® _ (30-1)(L.46)°

=15.45
62 (2)2

Now referring to the tables, we find that at 29 degrees of freedom, the
value of y? that leaves an area of 0.01 in the lower tail of the curve is 14.256

(since we are testing at the lower end, this value is got at 1 -0.01 = 0.99 of the area
under the right tail). This is shown in the figure as given below

Acceptance region

—
»

0.01 of
the area

&

=
14.256 15.45
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Conclusion: Since the calculated value of chi square falls in the acceptance
region, we accept the null hypothesis and conclude that standard deviation is equal
to 2. Therefore the management will not aloe the sale of its telephone.

16.7  y*test for Goodness of Fit Test.

This test is used for testing the significance of the discrepancy between
theory and experiment was given by Prof. Karl Pearson and is known as “Chi-
square test of goodness of fit”. It enables us to find if the deviation of the
experiment from theory is just by chance or is it really due to the inadequacy of
the theory to fit the observed data.

If fi (i =1, 2, ..., n) is a set of observed (experimental) frequencies and e; (i
= 1, 2,n) is the corresponding set of expected (theoretical or hypothetical)

frequencies, then Karl Pearson’s chi-square, given by

=502 ($0-5)

i-1 €;

follows chi-square distribution with (n - 1) d.f.

How to decide :Accept Ho if y? <y2 (n- 1) and reject Ho if 32 > y2 (n -
1), where y? is the calculated value of chi-square and »2 (n-1) is the tabulated

value of chi-square for (n-1) d.f. and level of significance « .

16.8 EXAMPLES BASED ON ¥ TEST FOR GOODNESS OF FIT TEST.

EXAMPLE: The demand for a particular spare part in a factory was found
to vary from day-to-day. In a sample study the following information was

obtained:
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Days : Mon. Tues. Wed. Thurs. Fri. Sat.

No. of parts demanded : 1124 1125 1110 1120 1126 1115

Test the hypothesis that the number of parts demanded does not depend on
the day of the week. (Given : the values of y?significance at 5, 6, 7, d.f. are

respectively 11.07,12.59, 14.07 at the 5% level of significance.)

Solution. Here we set up the null hypothesis, Ho that the number of parts
demanded does not depend on the day of week.

Under the null hypothesis, the expected frequencies of the spare part
demanded on each of the six days would be:1/6(1124+ 1125 + 1110 + 1120 +
1126 + 1115)=6720/6=1120

And our test static is

v =z{u} (24~

i=1 € i=1 i=1

CALCULATIONS FOR y?

Days Observed Expected (f.—e;)? (f —e;)?

frequency(fi) | frequency(ei) €

Monday 1124 1120 16 0.014

Tuesday 1125 1120 25 0.022

Wednesday 1110 1120 100 0.089
Thursday 1120 1120 0 0

Friday 1126 1120 36 0.032

Saturday 1115 1120 25 0.022

Total 6720 0.179
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So y2= i{w} ~0.179

i=1 i

The tabulated 520.05 for 5 d.f. = 11.07.

Conclusion: Since calculated value of 5?2 is less than the tabulated value, it
is not significant and the null hypothesis may accepted at 5% level of significance.
Hence we conclude that the numbers of parts demanded are same over the 6-day

period.

EXAMPLE: The following figures show the distribution of digits in
numbers chosen at random from a telephone directory:

Digits : 0 1 2 3 4 5 6 7 8 9
Freq: 1026 1107 997 966 1075 933 1107 972 964 853
Total 10,000

Test whether the digits may be taken to occur equally frequently in the

directory.

16.9  y°TEST OF INDEPENDENCE OF ATTRIBUTES

Let us consider two attributes A divided into r classes Ay, A, ..., Arand B
divided into s classes Bj, B, ..., Bs. Such a classification in which attributes are
divided into more than two classes is known as manifold classification. The
various cell frequencies can be expressed in the following table known as r x s
manifold contingency table where (A;) is the number of persons possessing the
attribute A, (i=1, 2, ..., r), (B;) is the number of persons possessing the attribute
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Bi 0 =1, 2, ..., s) and (AiB;) is the number of persons possessing both the
attributes Ajand B;, (i=1,2,...,1;=1, 2, ..., 9).

A
B A A, A A, Total
B, (AB,) (4, B) (AiB,) (A, By) (By)
B, (A1By)  (A:By) v (A;By) o (A, By) (B2
B; (AB)  (A;B) - (A;B) - ,B) ®)
B, A1Bg)  (A3B) . (A;By) e (A, B) (By)
Total A, Ay . (A) .. (A) N

Here the problem is to test if the two attributes A and B under

consideration independent or not.

Under the null hypothesis that the attributes are independent, the

theoretical frequencies are calculated by using

__ith row total x jth column total
sample size

i
the test statistic in this case is given by

2 (fij_eij)2
IDE

[ i ij
Where e;; is the expected frequency in column i and row j

fij = observed frequency for contingency table category in column i and

row j

which is distributed as a y?-variate with (r - 1) (s -1) degrees of freedom.
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16.10 EXAMPLES BASED ON x> TEST OF INDEPENDENCE OF ATTRIBUTES

EXAMPLE: Two sample polls of votes for two candidates A and B for a
public office are taken, one from among the residents of rural areas. The results
are given in the adjoining table. Examine whether the nature of the area is related

to voting preference in this election.

Area Vote for A Vote for B Total
Rural 620 380 1000
Urban 550 450 1000
Total 1170 830 2000

Sol: Under the null hypothesis that the nature of the area is independent of

the voting preference in the election, we get the expected frequencies as follows

1170x1000 _585 and E(380) = 830x1000 _415

2000, 2000

1170x1000 _585 and E(380) = 830x1000 _415

2000, 2000

X =Z{M}

i €

E(620) =

E(550) =

2 2 2 2
_(620-585)°  (380-415)°  (550-585)° (450-415)" _ 409,
585 415 585 415

Tabulated »,20.05 for (2-1) (2-1) =1 d.f. is 3.841. Since calculated 42 is

much greater than the tabulated value, it is highly significant and null hypothesis
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is rejected at 5% level of significance. Thus we conclude that nature of area is
related to voting preference in the election.

EXAMPLE: (2x2 CONTINGENCY TABLE). For the 2 x2 table,

a b

c d

Prove that chi-square test of independence gives

2 ( N[ad - bc]? ) Where
(@+b)(@+c)(b+d)(c+d)

N=a+b+c+d

Solution. Under the hypothesis of independence of attributes,

Ea) :W, E(b)= @~ b)N(b+d)
E(c) = (a+C)|\(|C+d) E(d):(b+dl)\fc+d)
a b a+b
c d C+d
a+c b+d N

2 _[a-E@)"  [0-EM®)]’ [c-E())  [d-E@)]’
E(a) E(b) E(c) E(d)
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_(a+b)(a+c) _ a(a+b+c+d)—(a*+ac+ab+bc)

a—-E(a)=a
(a) N N
_ad-hc
N
Similarly we get
b—E(b):—adlzle:c—E(c); d—E(d)=2d=PC

Substituting in (1), we get

, [ad-bc)?| 1 P S S
L=\ |E@ E®)  E@  E@)

_ [ad —bc]’ 1 . 1 . 1 . 1
N (a+b)@@a+c) (a+b)(b+d)) ((a+c)c+d) (b+d)(c+d)

_[ad-Dbc]? a+b+c+d .\ b+d+a+c
N (a+b)@+c)(b+d)) ((a+c)c+d)(b+d)

_[ad-Dbc]? a+b+c+d .\ b+d+a+c
N (a+b)@+c)(b+d)) ((a+c)c+d)(b+d)

_[ad—bc]’ c+d+a+b N b+d+a+c
- (@a+b)@+c)(b+d) ) \(a+c)(c+d)(b+d)

_[ad-Dbc]? a+b+c+d
Y (a+b)@+c)(b+d)(c+d)

~ N[ad —bc]?
" (@a+b)(@+c)(b+d)(c+d)

Hence Proved
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16.11 Self Assessment Questions

Question No 1 what are the types of observational data suitable for the chi-
square test, in a contingency table?

Question No 2 What do you understand by the test of goodness of fit?
Question No 3 Discuss a contingency table.

Question No 4 Following table gives the data regarding the field of study
in the university and their field of specialization in High School.

Specialization in High Field of study in the University
School
Biology Biology Medicine Agriculture
Physics and Maths 26 52 23
Agriculture 3 44 8
Humanities 4 1 15
6 11 10

Check whether is there any dependency of the field of study in the
university on their field of specialization in High School.

Question No 5 Following table gives the number of births according to

their sex and condition at the time of birth.

Sex Condition -

Normal Abnormal

Male 19 5
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Female 30 6

Test at o= 0.05, whether the condition at birth depends on the sex of the
child.

Question No 6 In a departmental examination, the candidates of both the
sexes yielded results as presented here in the (2 x 2) table.

Sex Pass Fail
Male 42 2
Female 14 6

Can it be inferred that he result of the test is related to the sex of the
candidates. Perform a suitable statistical test to arrive at the correct decision, using
a 5 per cent level.8

Question No 7 Describe the use of the y?test in testing of independence of
attributes in a (2 X 2) contingency table
Question No 8 A private coaching school claims that 60% of the students,

coached in the school, will be selected in a competition, 55 candidates sought
admission in the school and only 24 candidates got selected.

Do the result of the candidates justify the claim of the school authorities at
1 per cent level of significance.

Question No 9 The following table reveals the condition of the house and
the condition of the children. Using the chi-square test, find out whether the

condition of house affects the condition of children
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Condition of Condition of house Total
children Clean Not clean
Very clean 76 43 119
Clean 47 17 55
Dirty 38 25 72
Total 139 107 246

Question No:-10 What are the kinds of hypotheses that can be tested by
the chi-square test ?

Question No:-11 Given below are the number of accidents of airplanes that
occurred on different days of a week. Find out whether the airplane accidents are

uniformly distributed over the seven days of the week.

Days Sun Mon Tues Wed Thurs Fri Sat Total

No. of Accidents | 16 18 10 14 13 11 16 98

Question No:-12 Answer the following in not more than three lines.
(a) Expected frequencies are obtained under which hypothesis?
(b) Why can the chi-square not be negative?

(c) Why can the value of F-statistic not be negative?
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Uniths Lesson 17

NON-PARAMETRIC TESTS

Structure:
17.1  Introduction
17.2  Objectives
17.3  Concept of Non Parametric Tests
17.4 Non Parametric Methods VV/S Parametric Metohds
17.5 Non Parametric Tests for Univariate Distributions
17.5.1  Test for Randomness ( Run Test)
17.5.2  Examples based on Test for Randomness ( Run Test)
17.5.3  The Sign Test
17.5.4  Examples based on Sign Test
1755  The Wilcoxon Test

17.6  Self Assessment Questions

17.1 Introduction

In most of the Statistical tests which we have so for studied we have
some of the features which are to be comply with if we have to apply these
statistical test correctly, for example we make the assumption of normality of
parent population from which we draw the random Samples or we may apply
limit theorem for sufficiently large Samples to relax the assumption of normality
etc.

A second assumption upon which most of the statistical tests rest is that

meaningful sample statistic, such as mean standard deviation, can be derived from
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the samples and used to estimate the corresponding population parameters. But the

data which is nominal in nature or ordinal do not yield the good results.

For such instances statistician have devised alternative procedures which
can be used to test the data which are nominal or ordinal in nature or for which
meaningful statistics cannot be calculated. A most important feature of these
alternative procedures is that they do not depend upon the shape of frequency
distribution. Since they do not depend upon the shape of frequency distribution
they are termed as distribution free tests. Such tests do not depend upon the
population parameters such as mean and variance, they are also called as non

parametric tests.

17.2 OBJECTIVES
The main objectives of this lesson are.
1. To offer a different approach to many of the decision problems
2. To understand the basic concept of non parametric tests.
3. To make a comparison between parametric and nonparametric tests

4. To know how to apply these tests to univariate data in a variety of

problems.

17.3 CONCEPT OF NON PARAMETRIC TESTS

In most of the statistical tests which we have so far studied we have two

features common

Q) The form of the frequency function of the parent population from
which the samples have been drawn is assumed to be known, and
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(i)  They were concerned with testing statistical hypothesis about the
parameters of this frequency function or estimating its parameters.

For example, almost all the exact (small) sample tests of significance are
based on the fundamental assumption that the parent population is normal and are
concerned with testing or estimating the means and variances of these populations.
Such tests, which deal with the parameters of the population, are known as
Parametric Tests.

Thus, a parametric statistical test is a test whose model specifies certain
conditions about the parameters of the population from which the samples are

drawn.

On the other hand, a Non-parametric (NP.) Test is a test that does not
depend on the particular form of the basic frequency function from which the
samples are drawn. In other words, non-parametric test does not make any

assumption regarding the form of the population.

In short, most of the statistical tests which we have so for studied we have
some of the features which are to be comply with if we have to apply these
Statistical test correctly, for example we make the assumption of normality of
parent population form which we draw the random samples or We may apply
central limit theorem for sufficiently large Samples to relax the normality

assumption etc.

Second assumption upon which most of the statistical tests rest is that
meaningful sample statistic, such as mean, standard deviation, But the data Which

is nominal in nature or Ordinal do not yield the good results.

For such instances statistician have devised alternative procedures which
can be used to test the data which are nominal or ordinal in nature or for which
meaningful statistics cannot be calculated is distribution free tests. Such tests do
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not depend upon the population parameters such as mean and variance they are
also called as non parametric tests.

However, certain assumptions associated with N.P. tests are:
() Sample observations are independent.
(i)  The variable under study is continuous.

(iii)  p.d.f. is continuous. This is postulated to determine the sampling
distributions

(iv)  Lower order moments exist.

Median is as good an index of central tendency as mean. We know, for
symmetrical distributions, mean and median coincide. Hence, in nonparametric

statistics median is taken as a measure of location parameter instead of mean.

Obviously these assumptions are fewer and much weaker than those
associated with parametric tests.

In the above mentioned questions/problems, the question first is known as
the problem of fit. The question second deals with the testing of randomness of
the sample and third question deals with the testing of hypothesis whether a

particular sample has been drawn from a specified population or not.

17.4 ADVANTAGES AND DRAWBACKS OF NON-PARAMETRIC METHODS

OVER PARAMETRIC METHODS.
Advantages

1. N.P. methods are readily comprehensible, very simple and easy to
apply and do not require complicated sample theory.

2. No assumption is made about the form of the frequency function of

the parent population from which sampling is done.
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17.5

No parametric technique will apply to the data which are mere
classification (i.e., which are measured in nominal scale), while N.P.
methods exist to deal with such data.

Since the socio-economic data are not, in general, normally
distributed, N.P. tests have found applications in Psychometry,
Sociology and Educational Statistics.

Drawbacks

1.

NP tests can be used only if the measurements are nominal or ordinal.
Even in that case, if a parametric test exists it is more powerful than
the NP test. In other words, if all the assumptions of a statistical
model are satisfied by the data and if the measurements are of
required strength, then the NP. tests are wasteful of time and data.

So far, no NP methods exist for testing interactions in ‘Analysis of
Variance’ model unless special assumptions about the additivity of

the model are made.

N.P. tests are designed to test statistical hypothesis only and not for
estimating the parameters

NON-PARAMETRICTESTS FOR UNIVARIATE DISTRIBUTION

The one sample tests are generally, used to answer the questions such as:

(i)

(i)

Is there a significance difference between the observed and expected

frequencies?

Is it reasonable to accept that the sample is a random Sample from

Some known population?
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(i) Is it reasonable to believe that the sample has been drawn from a
Specified population?

In the above mentioned questions/problems, the question first is known as
the problem of fit which has been in Chi-square that of Goodness of fit and test of
homogeneity.

The question second deals with the testing of randomness of the sample
and third question deals with the testing of hypothesis whether a particular sample
has been drawn from a specified population or not.

Here a random sample of size n is drawn from a population and the sample
values are arranged in order of magnitude and ranked accordingly, if need be.
Various tests lead us to decide whether the sample has come from a particular
population. Also, we test whether the median of the population is equal to a
known value or not. Such tests are classified as tests for goodness of fit like chi-

square test.

17.5.1 TEST FOR RANDOMNESS
ONE SAMPLE RUN TEST FOR RANDOMNESS

One application of run test is in testing the randomness of a given set of
the observations. The run test for randomness tests the null hypothesis that a
sequence of events has occurred randomly, against the alternative hypothesis

that this sequence of events has not occurred randomly.
To test this hypothesis we have the following procedure

Procedure: Let x; , X2, ..Xn, be the set of sample observations arranged in
the order in which they occur. Then for each of observations we write A if the
observation x’s is above the median (Mo) and B if it is below the median, Then
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we determine total number of runs, where a run is defined as a sequence of

letters of one kind surrounded by sequence of letters of other kind.

Let R; and R, are the number of runs of type | and type Il respectively,
thus R=R;+R; be the total number of runs in the sample. It is our test statistic. We
compare this value of R with the critical value of R for given n;, n, and level of
significance « .If n is greater than 25, then to test the above hypothesis we use
normal approximation as

_ R-E[R]

" SD(R) NOD

2n;n,
n +n,

S D[R] _ \/2n1n2(2n1n2 —-N - nz)
. (n1+n2)2(n1+n2 -1)

Where E[R] = +1 and

where, nj,and n, are the number of observations of type | and type Il
respectively.

17.5.2 EXAMPLE BASED ON RUN TEST FOR RANDOMNESS

Example: Test the randomness of the 15 observations in the order
obtained

5.42,5.28,5.43,5.54,5.44,5.31, 5.32,5.34, 5.46, 5.33, 532, 5.31, 5.47, 5.48, 5.20

Solution: First of all we arrange the given (above) observations in
ascending order and then obtain median as

. 15+1)" "
Sample median = - term=8" term=5.34
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Writing A and B under each observation according it as above or below
the median (discard tied observations) Therefore, we. obtained the following
sequence of A and B.

ABAAABBABBBAAB
thus n;=7 ,n,=7 ,R;=4, R,=4 and R=R;+R,=8 and n =7+7=14
To test Ho : The sample is random.

To test this hypothesis, we will use run test. Since both the n; and n; are
less than 25, the critical value of R at 5 percent level of significance is 3 and
13(from table) Thus we do not reject the null hypothesis of randomness.

EXAMPLE: Following is a sequence of heads (H) and tails (T) in tossing
of a coin 14 times.

HTTHHHTHTTHHTH

Test whether the heads and tails occur in random order. [Given: o= 0.05,
rn=2,r,=12]

Ans. For the given sequence, The sample size, n = 14, No. of heads,n;= 8
No. of tails,n,= 6 No. of runs of H,r; =5 No. of runsof T, r,.=4
so that r=5+4=9

Since the observed value of r = 9 lies between the critical values 3 and 12,
we accept Ho. It means that the heads and tails occur in random order or it can be
said that the coin is unbiased.

17.5.3 THE SIGN TEST

The sign test is the simplest of the non-parametric tests. Its name comes
from the fact that it is based on the direction (i.e. signs of + and -) of observations

242



and not on their numerical magnitude. The sign test is applied to make the
hypothesis test about preferences, single median and the median of paired

differences for two dependent populations.

Let us use this test to test the hypothesis that the sample has been drawn
from a population with c.d.f. fo(x) or with median M,. That is

H,:F(x)=F,(x)  against H,tF(X) # Fo(X)
or equivalently

H,:M =M, against H,:M =M,
1 . 1

H:p== against H p#—

o+ P > g 1- P >

Where p is the probability that the number of observations less than the

median.
To test this hypothesis the following test procedure will be followed.

Procedure : Let X3 , X2, ..Xn, be a random sample drawn from a continuous
population with median M. Let My be the value of median under Ho. Further let
Di= Xi-My, i = 1, 2, 3, .n and put plus sign (+) or negative sign (-) according as Di
>0 or Di<O and discard those Di’s for which D;, =0.

Let S denotes the number of plus signs, then S follows a binomial
distribution with parameters n and p. where p =1/2 and n is the sum of plus and
minus signs. To test the above Ho, we find the probability

PS> s/H,] = Z@(%N%}

If this probability is greater than the given level of significance (« ), we
accept Ho, otherwise reject Ho. Further if n is large, then to test Ho we use normal
approximation as
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S—np

v NPq

Z =

~ N(0)

17.5.4 EXAMPLE BASED ON THE SIGN TEST

Example : The average income (as measured be median) of women
employees in a firm is Rs 3500 per month. A sample of 13 men chosen from the
men employee in that firm. On the basis of their incomes given below, is there
evidence that the average income of men exceeds that of women? Income in

thousand of Rupees

4.0, 3.5, 4.6, 4.4,3.7,3.4,3.9,4.1,4.1,9.9,3.6,3.3 and 4.2

Sot: Let M is the median of the distribution of X, where X is the income of

men in thousand
Then we have to test the hypothesis.
Ho: M=M=3.5 against H;: M>3.5

To test Ho, let D = X; -Mo =X;-3.5 for i =1 ,2 3 ...n and then put plus
signs or minus signs according as D;, >0 or D; <0 as given below in the table

X D = Xi-Mo - signs + signs
4.0 +0.5 +
35 0

4.6 11 +
4.4 0.9 +
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3.7 0.2 +
3.4 -0.1 -

3.9 0.4 +
4.1 0.6 +
4.1 0.6 +
9.9 6.4 +
3.6 0.1 +
3.3 -0.2 -

4.2 0.7 +

Here S number of plus signs = 10

Thus S~ 3(12,%)

To test Ho, we find the probability

R N I O

1 12

= (E] (66+12+1)=0.0193
If we take o =0.05, then critical region is given by

W={S;S>r}

Since P = 0.0193 is less that of a =0.05 so we reject Ho.

That is, this provides reasonable evidence that the average income of men

exceeds that of women in the firm.
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17.5.5 THE WILCOXON TEST (WILCOXON RANK SUM TEST)

The Wilcoxon signed-rank test is a non-parametric statistical hypothesis
test used when comparing two related samples, matched samples, or repeated
measurements on a single sample to assess whether their population mean ranks
differ (i.e. it is a paired difference test). It can be used as an alternative to the
paired Student's t-test, t-test for matched pairs, or the t-test for dependent samples
when the population cannot be assumed to be normally distributed or data is on

ordinal scale.

The test is named for Frank Wilcoxon (1892-1965) who, in a single paper,
proposed both it and the rank-sum test for two independent samples (Wilcoxon,
1945). The test was popularized by Siegel (1956) in his influential text book on
non-parametric statistics. Siegel used the symbol T . In consequence, the test is
sometimes referred to as the Wilcoxon T test, and the test statistic is reported as a

value of T.

The ordinary sign test takes into account only the signs of differences
between each observation and the hypothesized median My whereas magnitudes
of these differences are ignored. If we take the assumption that the population is
symmetric, the Wilcoxon test (or Wilcoxon signed-rank test) provides an
alternative test of location which utilizes both the magnitudes and signs of these

differences.

Let X;, Xs... X, be a random sample from a continuous population with
c.d.f. F(x) and median M. The test of location that takes into account not only the
sign of deviations {X; - Mo }, 1 = 1, 2,... n but also the magnitudes of the
deviations, where Mo is the median under Ho. Here we also assume that the
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probability density function of X, f(x), is symmetric about the median My of the
distribution. Here our hypothesis is

Hy:M =M, against H :M =M,

Now Define D; = X -Mqy, i=1 2....n and define the absolute
difference without regard to sign i.e.

D] =X, = M|
Discard the tied observations i.e. X —M;=0.

Then under Ho, the Di’s are symmetrically distributed about median zero.
Therefore, positive and negative differences of equal magnitude have the same

probability of occurrance i.e.
P|D; <c|=P|D; > ¢|

Now we arrange the D;’s in ascending order of magnitudes and then assign

ranks froml to n.
Now we define T*and T~
T* =Sumof ranks for which D, >0
T~ =Sumof ranks for which D, <0

Since sum of all raks is constant i.e.,

s - . wn(n+l)
T +T :glzg 5

the test based on T*+T and T*-T will be equivalent. In practice, the

smallestof T*+T-and T*-T~ is used as the test statistic

Let T= Min(T*,T77) and t, be such that P[T <t,]=«, then the critical

regions for different types of alternatives will be as given below
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Appropriate Alternative Critical Region

Hi:M>Mo T <t,

Hi:M<Mo T <t,

Hi:M= Mo TP<t,orT-<t,
2 2

The tables of the left-hand critical values are given by Wilcoxon.

For large n (n >25), the distribution of standardized T may be taken to be
N (0, 1). Under Ho, the distribution of

Z=L(T+)~N(O,l)

)

Where E[T+] - n(n4+1) and V(T )= n(n +12)i2n +1)

17.6 SELF ASSESSMENT QUESTIONS

1. Explain the non parametric methods how they are different from the
parametric methods?

2. Derive the sign test stating clearly the assumptions made for it.

3. Explain the main difference between non parametric methods and
parametric methods.

4. Explain the median test, how it is applied.

5. Give the advantages of non parametric methods over the parametric
methods.

6. What are runs, how they are helpful in non parametric inferences?
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Uniths Lesson 18

NON-PARAMETRIC TESTS

Structure :

18.1 Introduction

18.2  Objectives

18.3  Non Parametric Tests for bivariate distributions

18.3.1 The Sign Test for paired samples

18.3.2 Examples based on Sign Test for paired samples

18.3.3 Wilcoxon Signed Rank Test for paired Data

18.3.4 Two sample tests for unpaired data.

18.3.5 Examples based Two sample tests for Unpaired data (Wilcoxon test)
18.3.6 Median test

18.4  Self assessment Questions

18.1 INTRODUCTION

Non Parametric tests based on two samples are classified into two
categories; non-parametric tests based on two paired (dependent samples)

samples and tests based on unpaired samples (independent samples).
() When there are pairs of observations on two things being compared

(i) For any given pair, each of the two observations is made under

similar extraneous conditions.

(iii)  Different pairs are compared under different conditions
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Here (ii) give rise to "dependent pairs of observations so require different

treatment from (i) and (ii) dependent pairs of observations

18.2 OBJECTIVES
The main objectives of this lesson is
1. To offer a different approach to many of the decision problems

2. To know how to apply these tests to bivariate data in a variety of

problems.
3. To apply non parametric test for dependent Samples.

4. To apply non parametric test for independent samples

18.3 NON PARAMETRIC TESTS FOR BIVARIATE DISTRIBUTIONS
Non Parametric tests based on two samples are classified into two

Categories; non-parametric tests based on two paired (dependent samples)
Samples and tests based on unpaired samples (independent samples).

18.3.1 SIGN TEST FOR PAIRED SAMPLES

The single sample sign test procedure for testing of hypothesis is equally
applicable to paired sample data. That is the observations in the two samples are
matched pairs such as

Q) X denotes a worker’s daily output before training and Y denotes
his daily output after the training.

(i) X and Y are pre and post treatment observations when considering
the effect of a single treatment.
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Suppose X and Y are two random variables and we want to test the null
hypothesis that the distributions of X and Y are identical. That is both the samples
have been drawn from two populations with same c.d.f.s.

Let (X,,Y,),(X,,Y,)eeeee, (X,,Y,)  be paired samples of observations

drawn from two populations with c.d.f,s F(x) and F(y) . Thus our problem is of

testing null hypotheses
F) = F(y)
To test the null hypothesis Hyg
Let Di=X;-Y;, i=1,2,3,.....,n

Let M be the median of population difference D, where this population is

assumed to be continuous so that

P[D=M]=0 and P[D>M]=P[D<M] =p
1
And under H; : p =3
Thus null hypothesis reduces to
1 1
P[D>M]:E and P[D<M]:E

If X,>Y, ie, D, >0put plus sign (+) and negative sign (-), if

X, <Y, ie., D, <0and discard those Di’s for which D;, =0.

Let S denotes the number of plus signs, then S follows a binomial
distribution with parameters n and p. where p =1/2 and n is the sum of plus and
minus signs. To test the above Ho, we find the probability

P[S > s/H,] = Zm@]@)
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If this probability is greater than the given level of significance (« ), we

accept Ho, otherwise reject Ho. Further if n is large (n >30), we use normal
approximation as

_S—E[S] _

‘= S.D(S) N (D
s N

Z=—22 -~ N(0Q

18.3.2 EXAMPLES BASED ON SIGN TEST FOR PAIRED SAMPLES

Example : Suppose there are 16 positive and 4 minus signs in the set of

the 20 paired observations (X, Y). Test the hypothesis that two samples are drawn
from the same population.

Solution : Here we want to test the hypothesis.

Ho:The two populations have an identical distribution.

It is given that the number of plus signs i.e. S = 16, n = 20 and under Ho,
p = 1/2. Thus under Ho, S~ B(20,1/2)). To test Hy, we find

P =P(S216/H)
GO
(892 (2)+ ()]

= 0.0059
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If take o = 0.01, then we reject the null hypothesis of identical
distribution as P < 0.01.

18.3.3 Wilcoxon Signed Rank Test for paired Data

Let (X,,Y,),(X,,Y,)eeeee, (X,,Y,) be paired samples of observations

drawn from two populations with c.d.f,s F(x) and F(y) . Thus our problem is of

testing null hypotheses
FO) = F(Y)
To test this hypothesis following procedure is used
To test the null hypothesis Hyg
Let Di= X-Yi , 1=1,2,3,.....,n and find |Di| for i=12,..,n
discard those Di’s for which D;, =0.Now arrange |Di| in ascending order of

their magnitude and assign them rank from 1 to n. Next we determine T*and T~

,where

T* =Sumof ranks for which D, >0
T~ =Sumof ranks for which D, <0

Then our test statistic is
T,=min(T*T")

This value of Tw can be compared with critical value of Tw, obtained
from table for given value of n,« and T.If calculated value of Tw is less than or
equal to critical value of Tw , we reject Ho , otherwise we accept the null
hypothesis.> f n is large we use normal approximation

Tw B E[Tw] -

y =~5pT) N (0,1)
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n(n+1) and V[T, ]= n(n+1)(2n+1)

Where E =
[T ] 4 24

18.3.4 TWO SAMPLE TESTS FOR UNPAIRED DATA.

Two Sample Tests For Unpaired Data (Wilcoxon test)

Let Xi, Xz,. ..Xm be a random sample of size m from a population with
c.d.f. F(x) and Y1, Y. ..,Yn be another random sample of size n from a
population with c.d.f F(y). These samples are drawn independently from each of
the two populations. The hypothesis of interest is that the two samples are drawn
from identical populations i.e.

Ho: F(X) = F(y), for all x.
In order to test this hypothesis the following is the testing procedure.

Combine the two sample observations. Arrange the pooled observations in
ascending order of magnitude and assign them ranks from 1 to m+n. Find the sum
of the ranks of first sample and second sample and let W; and W, denote these

sum respectively.
Let W=W;+W>
Sum of the ranks of all the m+n N observations

Wilcoxon proposed a test for accepting the one-sided location alternative if
the W1 in the combined sample is too large or two small according the alternative
hypothesis. The two-sided location alternative hypothesis is accepted if the sum of
ranks of first sample is either too large or two small. The Wilcoxon test statistic is

N
Ty =iz, N=m+n
i=1

Where Zi is defined as
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Zi =1 if the observation in combined sample is from first sample
= 0 otherwise.

If N = (m+n) is large, we use normal approximation as

7 :-I-W_—E[TW]~ N (0,1)

W)

Where E[T,]= m(N +1) and VI[T,]= mn(N +1)

2 12

Note For this test, the normal approximation is good even for N = 12

18.3.5 EXAMPLES BASED TWO SAMPLE TESTS FOR UNPAIRED DATA

(WILCOXON TEST)

Example Consider the data given in the table below describing the

lifetimes of certain types of tubes manufactured by two methods
New Method : 259 254 249 256 252 260
Old Method : 250 247 253 244 251 258
Does this indicate that the life time with new method has increased?
Solution Here we formulate the following null hypothesis.

Ho: There is no significance difference between the life times of tubes

manufactured by two methods.

To test this hypothesis, we first combined the observations of both the

samples and assign ranks after arranging in ascending order of their magnitude
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Life time Method Rank
Old New Old New

244 Old 1
247 Old 2
249 New 3
250 ol 4
251 ol 5
252 New 6
253 ol 7
254 New 8
256 New 9
258 ol 10
259 New 11
260 New 12
Sum 29 49

Therefore, Tw = sum of ranks of first sample =49

Since N = m+n = 6+6 = 12 is large, so, we use normal approximation.

z =Tu —El] oy

N

m(N+1) 6x13

Where E = 39
Ml="—" ==
mn(N +1

v, 1= M)

and 6x6x13
_0X0X13 g9
12

There fore
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TW — EI.TW]

V)

_9-39 160~ N (0,1)

V39

If « =0.05 then Z_ =1.645

Since Z <1.645 we accept null hypothesis.

18.3.6 MEDIAN TEST

In statistics, Mood's median test is a special case of Pearson's chi-Square
test. It is a nonparametric test that tests the null hypothesis that the medians of the
populations from which two samples are drawn are identical. The data in each
Sample are assigned to two groups, one consisting of data whose values are higher
than the median Value in the two groups combined, and the other consisting of
data whose values are at the median or below. A Pearson's chi-square test is then
used to determine whether the observed frequencies in each group differ from
expected frequencies derived from a distribution combining the two groups.

Let X, Xz,..Xm and Yy, Y3,...Yn be two independent random samples
of size m and n from populations with c.d.f. F(x) and F(y) respectively. The
hypothesis of interest is that

H,:F,(x)=F (y) forall xor H,:M, =M,

where M; and M are the median of first and second sample respectively.
To test this hypothesis, the test procedure is given below
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First of all we arrange the two sample observations together in increasing
order and calculate the median for combined sample. Let it is M. Now we classify
the sample values of both samples in the following 2x2 table

No. of obsn Sample-1 Sample-II Total
Above M ‘ m, 8 my +1y
Below M m-m, n-n, N-m; -
m
Total m n m+n=N

Let m; and n; be the number of observations of first and second sample
greater than the median. Now to test the hypothesis, we find the following

)

We compare this probability P with level of significance « .If P>« ,we

probability

accept null hypothesis , otherwise we reject it.If frequencies in 2x2 table are

large, we may use y’test with 1 degree of freedom for testing null hypothesis.

2 N[ml(n B nl) B nl(nl B ml)]2
- (m +n)(N—m, —n)mn
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18.4 SELF ASSESSMENT QUESTIONS

1.

Explain non-parametric methods how can they be used for bivariate
data

Differentiate clearly between dependent and independent pairs of
observations in reference to non-parametric tests.

Derive the median test stating clearly assumptions made for it.

Derive two sample test for unpaired data (WIlcoxon) and for paired
data.

Explain median test how it is applied

Explain clearly stating assumptions if any, the sign test for paired

samples.
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Unit-5 Lesson 19

NON-PARAMETRIC TESTS

STRUCTURE

19.1 Introduction

19.2 Objectives

19.3 Mann-Whitney U test

19.3.1 Assumptions and formal statement of hypotheses in Mann-Whitney U test
19.3.2 Procedure for Mann-Whitney U test

19.3.3 Examples

19.3.4. Normal approximation of Mann Whitney U test

19.3.5 Relation of Mann Whitney U test with other tests

19.4  Test for independence based on Spearman’s rank correlation method
19.4.1 Example based on Spearman's rank correlation method

19.5 Self assessment questions

19.1 INTRODUCTION
We classify Non Parametric tests based on two samples into two

categories; non-parametric tests based on two paired (dependent samples) samples

and tests based on unpaired samples (independent samples)

19.2 OBJECTIVES
The main objectives of this lesson are
1. To offer a different approach to many of the decision problems
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2. To know how to apply these tests to bivariate data in a variety of
problems.

3. To know how to apply Mann Whitney U test.

4. To know how to apply Spearmen’s rank correlation method to non-

parametric problems

5. To apply non parametric test for independent samples

19.3 MANN-WHITNEY U TEST

In statistics, the Mann-Whitney U test (also called the Mann—Whitney—
Wilcoxon (MWW) or Wilcoxon rank-sum test) is a non-parametric statistical
hypothesis test for assessing whether two independent samples of observations
have equally large values. It is one of the most well-known non-parametric
significance tests. It was proposed initially by Frank Wilcoxon in 1945, for equal
sample sizes, and extended to arbitrary sample sizes and in other ways by Henry
Mann and his student Donald Ransom Whitney in 1947.

19.3.1 ASSUMPTIONS AND FORMAL STATEMENT OF
HYPOTHESES

Although Mann and Whitney developed the MWW test under the
assumption of continuous responses with the alternative hypothesis being that one
distribution is stochastically greater than the other, there are many other ways to
formulate the null and alternative hypotheses such that the MWW test will give a
valid test.

A Very general formulation is to assume that:
1. All the observations from both groups are independent of each other,
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2. The responses are ordinal or continuous measurements(i.e. one can

atleast say, of any two observations, which is the greater),

3. Under the null hypothesis the distributions of both groups are equal,
so that the probability of an observation from one population (X)
exceeding an observation from the second population (Y)equals the
probability of an observation from Y exceeding an observation from
X, that is, there is a symmetry between populations with respect to

probability of random drawing of a larger observation.

4. Under the alternative hypothesis the probability of an observation
from one population (X) exceeding an observation from the second population (Y)
(after correcting forties) is not equal to 0.5. The alternative may also be stated in
terms of a one-sided test, for example: P(X >Y) +0,5-P(X =Y) >0.5.

If we add more strict assumptions than those above such that the responses
are assumed continuous and the alternative is a location shift (i.e.
F.(x)=F,(x+9)), then we can interpret a significant MWW test as showing a
significant difference in medians. Under this location shift assumption, we can
also interpret the MW W as assessing whether the Hodges-Lehmann estimate of
the difference in central tendency between the two populations differs
significantly from zero. The Hodges-Lehmann estimate for this two-sample
problem is the median of all possible differences between an observation in the
first sample and an observation in the second sample.

19.3.2 PROCEDURE MANN-WHITNEY U TEST

The test involves the calculation of a statistic, usually called U, whose
distribution under the null hypothesis is known. In the case of small samples, the
distribution is tabulated, but for sample sizes above ~20 there is a good
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approximation using the normal distribution. Some books tabulate statistics
equivalent to U, such as the sum of ranks in one of the samples, rather than U
itself

The U test is included in most modern statistical packages. It is also easily
calculated by hand, especially for small samples. There are two ways of doing
this.

First, arrange all the observations into a single ranked series. That is, rank

all the observations without regard to which sample they are in.

For Small Samples a direct method is recommended. It is very quick, and

gives an insight into the meaning of the U statistic.

1. Choose the sample for which the ranks seem to be smaller (The only
reason to do this is to make computation easier). Call this "sample 1"
and call the other sample "sample 2."

2. Taking each observation in sample 1, count the number of
observations in sample 2 that have a smaller rank (count a half for any
that are equal to it). The sum of these counts is U.

For larger samples, a formula can be used:

1. Add up the ranks for the observations which came from sample 1. The
sum of ranks in Sample 2 follows by calculation, since the sum of all the ranks
equals N(N + 1)/2 where N is the total number of observations.

2. Uisthen given by:

_ni(n +1)

U, =R,

where n, is the sample size for sample 1, and Ry is the sum of the ranks in

sample 1
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Note that there is no specification as to which sample is considered sample
1. An equally valid formula for U is

The smaller value of U; and U; is the one used when consulting
significance tables. The sum of the two values is given by

U,+U, =R, - n,(n, +1) iR, - n,(n, +1)
2 2
Knowing that Ry + R, = N(N + 1)/2 and N = n; + ny, we find that the sum

U,+U,=nn,

The maximum value of U is the product of sample sizes of two samples.

19.3.3 EXAMPLES

EXAMPLE:Suppose that Aesop is dissatisfied with his classic experiment
in which one tortoise was found to beat one hare in a race, and decides to carry out
a significance test to discover whether the results could be extended to tortoises
and hares in general. He collects a sample of 6 tortoises and 6 hares, and makes
them all run his race at once. The order in which they reach the finishing post
(their rank order, from first to last crossing the finish line) is as follows, writing T
for a tortoise and H for a hare:

THHHHHTTTTTH
What is the value of U?

e Using the direct method, we take each tortoise in turn, and count the
number of hares it is beaten by, getting 0, 5, 5, 5, 5, 5, which means U
= 25. Alternatively, we could take each hare in turn, and count the
number of tortoises it is beaten by. In this case, we get 1, 1, 1,1, 1, 6.
SoU=6+1+1+1+1+1=11 Note that the sum of these two
values for U is 36, which is 6 x 6.
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e Using the indirect method: the sum of the ranks achieved by the
tortoisesis 1+ 7 + 8+ 9+ 10 + 11 = 46.
Therefore U = 46 — (6%7)/2 = 46 — 21 = 25.
the sum of the ranks achieved by the haresis2 +3+4 +5+ 6 + 12 = 32,
leading to U =32 — 21 = 11.
Example:Consider another hare and tortoise race, with 19 participants of

each species, in which the outcomes are as follows:

HHHHHHHHHTTTTTTTTTTHHHHHHHHHHTTT
TTTTTT

The median tortoise here comes in at position 19, and thus actually beats
the median hare, which comes in at position 20.

However, the value of U (for hares) is 100

(9 Hares beaten by (x) 0 tortoises) + (10 hares beaten by (x) 10 tortoises) =
0 +100 =100

Value of U (for tortoises) is 261

(10 tortoises beaten by 9 hares) + (9 tortoises beaten

by 19 hares) =90 + 171 = 261

Consulting tables, or using the approximation below, shows that this U
value gives significant evidence that hares tend to do better than tortoises
(p < 0.05, two-tailed). Obviously this is an extreme distribution that would be
spotted easily, but in a larger sample something similar could happen without it
being so apparent. Notice that the problem here is not that the two distributions of
ranks have different variances; they are mirror images of each other, so their
variances are the same, but they have very different skewness.
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19.3.4 NORMAL APPROXIMATION OF MANN WHITNEY U TEST

For large samples, U is approximately normally distributed. In that case,
the standardized value

_nn, (n,+n,+1)
12

: n,n . o
Since U; + Uy = ny ny, the mean % used in the normal approximation is

the mean of the two values of U. Therefore, the absolute value of the z statistic

calculated will be same whichever value of U is used.

19.3.5 RELATION OF MANN WHITNEY U TEST WITH OTHER TESTS

Non-parametric tests are basically used in order to overcome the
underlying assumption of normality in parametric tests. Quite general assumptions
regarding the population are used in these tests.

A case in point is the Mann-Whitney U-test (Also known as the Mann-
Whitney-Wilcoxon (MWW)). Unlike its parametric counterpart, the t-test for two
samples, this test does not assume that the difference between the samples
is normally distributed, or that the variances of the two populations are equal.
Thus when the validity of the assumptions of t-test are questionable, the Mann-

Whitney U-Test comes into play and hence has wider applicability.
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Summarizing the above discussion we can say that:The U test is
useful in the same situations as the independent samples Student's t-test, and the
question arises of which should be preferred.

Ordinal data

U remains the logical choice when the data are ordinal but not interval
scaled, so that the spacing between adjacent values cannot be assumed to be

constant.
Robustness

As it compares the sums of ranks, the Mann-Whitney test is less likely
than the t-test to spuriously indicate significance because of the presence of
outliers — i.e. Mann-Whitney is more robust.

19.3.6 EFFICIENCY OF MANN WHITNEY U TEST

When normality holds, MWW has an (asymptotic) efficiency of 3 / & or
about 0.95 when compared to the t test. For distributions sufficiently far from
normal and for sufficiently large sample sizes, the MWW can be considerably

more efficient than the t.

Overall, the robustness makes the MWW more widely applicable than the t
test, and for large samples from the normal distribution, the efficiency loss
compared to the t test is only 5%, so one can recommend MWW as the default test

for comparing interval or ordinal measurements with similar distributions.

The relation between efficiency and power in concrete situations isn't
trivial though. For small sample sizes one should investigate the power of the
MWW v/s t.

MWW will give very similar results to performing an ordinary parametric

two-sample t test on the rankings of the data.
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19.4 TEST FOR INDEPENDENCE BASED ON SPEARMAN’S RANK CORRELATION

METHOD

Let (X1, Y1), (X2, Y2)....(Xn ,Yn) be a random samples from bivariate
population. We know that the coefficient of correlation is defined by

DRI
13 e I3 2
\/n;(xi_x) \/n;(yi_y)

R=

ZXX -y -
S . (1)

\/Z(Xi _X)Z\/Z(yi _7)2

n
where x=—2x andy_ Zyi
nia

=1

If the sample values X1, Xz,...Xn and Y1, Y>,...Yn are each ranked from 1
to n in increasing order of their magnitude and if X;’s and Y;’s have continuous
degrees of freedom we get a unique set of rankings and the data will reduce to n
pairs of rankings .

Let us write R; =Rank (Xi), Si= Rank(Y1) ;i1=1,2.....n

YR =35 =200 -(2)
i=1 i=1 2

Sothat R =5 = {"*D ..(3)

_n(n®-1)

And Zn:(Ri ~-R)? = Zn:(si ~-S5)? = substituting in eq (1) we get
i=1 i=1
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R: ! = —
n®—n n(n® -1 n-1

..(4)

Let Di=R;- Si= (R, -R)(S; -S) then we have

>0 = 2R R+ Y (S, -5) - 2) (R ~R)(S, - 5)

i=1

=MD 53 R RS, - )

n(n*-1) 1 2 o _n*-1)
= g g R.n(n" -1) = 5 [1-R]
50;
=  R=1-—FL (5)
n(n® -1)

The statistic defined in (4) and (5) is called as spearman’s rank correlation

coefficient. From eq.(4) we see that

12 E{z Risi} 30+

i=1

E[R] =

n(n® -1) n-1

- 122n E[ iSi]— 3(n+1): ]2.2 [Risi]— 3(n +1)
n(n® -1 n-1 (n°-1) n-1
.. (6)

Under Ho, the random variables X and Y are independent, so that the ranks

Ri and S; are also independent. It means that

2
E,, [RS]1=E[R.E[S,]= “;1. ”;1 =(”;1) so that from (6)
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.. [R]= %2 [n+lj2_3(n+l):0
(-1 \ 2 n-1

..(7)
Thus we should reject Ho if the tabulated value of R is large , reject HO if
IRI=R,

Poll R[> R, <@

Critical Values of r, the critical values of rs can be obtained by the table for
critical values for the Spearman Rho rank correlation coefficient test for given
sample size and significance level. If test is two tailed, we use two critical values,
one negative and one. positive. For left tailed test we use negative values of rs, and
use positive value of rs if test is right tailed test. Where is Spearman’s rank

correlation

19.4.1 EXAMPLE BASED ON SPEARMAN'S RANK CORRELATION METHOD

Example: The following table shows the per capita income (in thousands)

and food expenditure of the family in different states.

Per capita income | 11 16 18 8 6 15 10 5

Expenditures 5 7 8 3 2 8 4 2

Based on above data, we can conclude that there is no significance (linear)

correlation between the per capita incomes and expenditures, use a@=0.05
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Solution:Here, the null hypothesis Hyp is there is no correlation between
per capita incomes and expenditure. And alternative hypothesis is H; is correlation

between per capita incomes and expenditures.

H,:p=0 and H,:p=#0 where o IS the rank correlation coefficient.

Critical region for statistic: here, n =8 and «=0.05 for two tailed test the
critical values are + 0.738. So we will reject null hypothesis if the observed values
of rsis either - 0.738 or less, or + 0.738 or above.

-0.738 or less -0.738 to +0.738 +0.738 or above

Rejection Non rejection Rejection

Here, rs = 0.869048 is higher than 0.738 so falls in rejection region, so null
hypothesis reject. Then we conclude that there is correlation between the per

capita income and expenditure.

19.5 SELF ASSESSMENT QUESTIONS
I.  Give advantages of non parametric methods over the parametric

methods

2. Explain non parametric how they can be used in case of bivariate
data.

3. Elaborate Mann Whitney U test with the help of suitable example

4. Derive expression for the test Statistic for Spearman's rank correlation
test for independence.

271



10.

Develop the following nonparametric tests, stating clearly he
underlying assumptions and the null hypothesis

(a) Mann -Whitney-Wilcoxon Test
(b) Spearman’s rank correlation test for independence

Describe the median test when there are two independent samples.
What non parametric test you would like to use When theses samples

are related.

Discuss Mann-Whitney-Wilcoxon test for equality of two population

distribution Functions
Critically examine the utility of Non Parametric tests

Highlight the advantages of Non Parametric tests in certain

experimental conditions

Use appropriate tests to see if there is a difference between numbers
of days required to collect receivable amount before and after a new

collection policy

Before: 32 35 33 36 44 41 36 32 39 31

After: 36 37 34 40 40 42 36 40 42 33

Before: 47 30 34 29 41

After: 36 37 34 40 39
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