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B.A. SEM-1V MATHEMATICS LESSON No. 1

THE REAL NUMBER SYSTEM

1.1. Introduction: In this lesson the concept of numbers such as natural numbers, whole
numbers, integers, real numbers etc.are given.

1.2. Objectives: Objective of studying this lesson is to give the idea how to construct
real numbers.

1.3. INTRODUCTION

An understanding of the real number system is basic to a thorough understanding of
analysis. There are several ways in which the study could be presented. Our way w a start
with the numbers, 1, 2, 3,.... (the “counting”, numbers, or “natural numbers”), to the set
of integers, and then construct the larger system of rational numbers; finally number
system could be constructed from the rationals as given in the following definition:

Definitions. 1.3.1 :
(1) The set of natural numbers is denoted by N and defined as
N={l,2 3.}
(i1) The set of integers is denoted by I or Z and defined as :
Zorl={.... -3,-2,-1,0,1, 2, 3,...}

(iii) The set of rational numbers is denoted by Q and defined as :

Q= {E:q;thndp,qEZ}
q

(iv) The set of irrational numbers is denoted by I, and defined as :
L={x|x ¢& Qj}, ie I, consists of all those numbers which are not rational.

(v) The set of real numbers is denoted by R and defined as:



R =Q U L, ie., the collection of all rational and irrational numbers is called
the set of real numbers.

The two fundamental operations in the real number system are addition and
multiplication. They are often called binary operations because they serve to combine
two elements (numbers) in prescribed ways. The familiar operations subtraction and
division are defined in addition and multiplication respectively. We shall start with eleven
axioms, five of which (A through As) describe addition, a similar five (M, through My)
which describe multiplication, and one (labeled D) which interrelates the two operations
in a particular way. We have:

AS-

Every pair of numbers a and b in R have a unique sum a + b, which is also
in R. (Closure law for addition).

Foraand binR,a +b =5+ a, (Commutative law for addition).
Fora, band cinR,a+ (b +c¢)=(a + b) +c.
(Associative law for addition)
There is a number 0 in R such that foreachain R, a +0=a=0 + a.
(Existence of an additive identity)

For every a €R, there exists a number — a in R such that a + (— a) = 0 =
-a) +a. (Existence of additive inverse).

The difference between a and b is defined as a + (- b) and the indicated operation
iscalled subtraction. Often a — b is used as an abbreviation for ¢ + (— ). The symbol
— b should be called “the additive inverse of b” or simply the “negative of b”.

Every pair of numbers a and b in R have unique product ab, which is also
in R. (Closure law for multiplication)

For a and b in R, ab = ba. (Commutative law for multiplication.)
For a, b and ¢ in R a (bc) = (ab) c. (Associative law for multiplication)

There exists a number I in R, where I %z 0, such that for each a in R,
al=a=la. (Existence of multiplicative identity)

For every a = 0 in R there exists a number, denoted by ¢ lin R, such that

1

aal=1=ala. (Existence of multiplicative inverse).

The quotient of ¢ and b, (b = 0), is defined as a.b™!, or equivalently, 5'. @ and
the indicated operation is called division. The common way of denoting the quotient is

a
P



D. Fora, bandcinR a (b + ¢) = ab = ac.
[Distributive law of multiplication over addition]
These eleven axioms are called the field axioms of real number system.

Definition 1.3.2. Any set F with two binary operations ‘+’ and °.” is said to be a field
if it satisfies the laws A; — A5, M, — My and D.

For example. The set Q of all rational numbers is a field under the usual operations
of addition and multiplication.

Example. The set of N of natural numbers is not a field .(because there is no additive
identity element in N).

Example. The set Z of integers is not a field under the usual addition and multiplication
compositor (why).

The real number system requires other axioms in addition to those for its complete
description,but before presenting further axioms we shall prove some theorems concerning
based only upon the axioms already stated.

Theorem 1.3.3. The cancellation law for addition :
b +a + ¢ + a implies that b = ¢, for all q, b, ceR.

Proof : b +a=c+a

= b+a)+(—a)=(c+a)+(—a)
= b+(a+(—a))=c+(a+(—a))
= b+0=c+0

= b=c

Theorem1.3.4. (Cancellation law of multiplication)

If x, v, zeR such that xy = xz and x % 0, then y = z.

1

Proof : As x # 0, so x* exists. Thus xy = xz

= ) =x"(x2)

or (x~ 1x)y =(x 1x)z
ly=1z

or y=z



Theorem 1.3.5. There can exists at the most one identity element:
(1) for addition (i1) for multiplication
InR.
Proof: (i) If possible, suppose 0 and 0' be two real numbers such that for each x & R.
x+0=x,x+0=x
Since x + 0 = xy¥ xe&R, therefore in particular 0' + 0 = 0' (1)
Again, since x + 0' = x, ¥ x&R therefore, in particular
0+0=0 ...(11)
From (i), (ii) and using—commutative law under addition, we have
0=0+0=0+0-=
Hence additive identity is unique in R.
(i1) Similar to (i) part.

It is often good idea to restate a theorem into the form of an implication in order to
make the proof move understandable. Be sure that the restatement is equivalent to the
original theorem.

1.4. EXAMINATION ORIENTED EXERCISE/ LESSON END
EXERCISE

Each of the following statements about real numbers is a theorem based on the eleven
field axioms. Prove each one in a manner similar to the proof of the proceeding theorems.

1. The additive identity is unique.

[Hint : Consider the restatement “if an element b has the property a+b = a for
all real numbers a, then b = 0];

2. The additive inverse of the additive inverse of a real number—b is b itself , i.e.—
(—b)=b.

3. The negative of zero is zero itself, i.e. —0 = 0.
4. The cancellation law for multiplication holds: i.e. ba = ca, and @ % 0 imply b=c.
5. The multiplicative inverse of a non zero number is unique.

6. The multiplicative identity is unique.

7. I'l=1



8. (c—-b)+b-a) =c-a
9. The additive inverse of a + bis —a — b, i.e. —(a + b) = —a — b.
[Note that —a — b is the abbreviation for (—a) + (=b)].
10. (¢ + @) — (c + b) = a —b.
1.5. THE AXIOMS OF ORDER

In addition to the field axioms, the real numbers have an order relation, “>; <* which
is based on the following axioms.

0,: Given any two real numbers a, b one and only one of the following holds:

a>b a=5b b>a [Law of Trichotomy]
O, :  For any real numbers a, b, ¢ if a > b, b > ¢, then a > c¢. [Transitivity]
Q; :  For all real numbers @, bandc, a >b = a+c>Db +c

[Monotone law of addition]
O, : For all real numbers @, b and ¢, a > band ¢ > 0 = ac > bc.

The field of real numbers together with O, through O, is called ordered field so we
have following definition:

Definition. Any field (F, +, .) which has the properties O, O,, O5 and O, is called
an ordered field.

Example. Q the set of rational numbers is an ordered field.

Remark : Imposibility of Ordering the Complex numbers. The notion of linear
ordering < does not apply to complex numbers. If possible, suppose we can define an
order relation < satisfying axioms Q, to Qs of 1.5 . Then since i % 0, we have either
i >0 of i <0 by axioms Q;. Assume i > 0. Then taking @ = b = i in axiom Q. we get
i.i>01ie —1 >0.Adding I to both sides (axiom Qz),we get 0 > I. Again applying Axiom
Q4 to —1>0 and -I > 0, we see that (1).(=1) > 0 or 1 > 0. Thus we have both 0 >
1 and 1 > 0 which contradicts axiom Q,.Similarly we cannot have 1 < 0.Hence complex
numbers cannot be ordered in such a way that axioms Q;to Qs are satisfied.

Since | z |, R (z) and I (z) are real numbers, the statements like | z; | < |z, |, R (z;)
<R (z,) and I (z;) > F (z,) are meaningful. Also since | z | = R2 (2), it is easy to see
that | z | | R(z) | R(z) and | z | I(z) 1(2).

1.6. ABSOLUTE VALUE

Definition1.6.1. The absolute value of a real number x is written as | x |, is defined
by



Ix|= xif x=0
YIE=xif x<0

It is clear that | x | is never negative i.e. | x | = 0.
Thus we always have
k] = 0
Geometrical meaning of Absolute value of x is the distance of point P from origin

i.e. If P is the position of point corresponding to real no. x, then distance from origin
OtoPis|x|or OP =] x|

Note : Also by definition
| =x[=]x]

Some theorems which are immediate consequences of the definitions will now follows

Theorem 1.6.2. | x | = max (x, — x)
Now |x|=x =2 —-xif x =20
Also x| =-x>x,ifx<0

Thus in either case [x|is greater of the two numbers, x —X, i.e.,|X|= max(X,—X)

Corollary 1.6.3 | —-x| =max (—x, — (— x))
=max (—x, xX) = | x|
|—x ] =]x]
Corollary 1.6.4. | x | = max (x, x) = x
x| = x,
Theorem 1.6.5. —| x| = min (x, — x)
Now x| =x<x,ifx>0
Also x| =(Fx)x<-=x,ifx<0
Thus in either case —Ix| is smaller of the two numbers x and —x,
ie. —| x| = min (x, —x)
Corollary 1.6.6. —| x| =min (x, x) < x
x| < x



Theorem 1.6.7. If x, ye R, then

Q) [xP=x*=]-xP (D) [xy [=]x|.[y]

(iii) Iy’ provided y = 0

X
Yy
Proof : (i) For x>0, |x|=x = |[x[=x°

For x<0, |x|=—x = |x|2=(—x)2=x2

Thus in either case |x[>=x?
Similarly, |—x = (—x)? = x?
Hence, |xf=x?=|-x|

. 2 2_22_1 2.2 2
(@) |xy "= (xp)" =x"p" =[x|" |y =(x]|y]

[y ==|x[[y]

But since | xy | and | x | . | ¥ | are both non negative, we take only the positive sign.

[xy|=]x]ly]

Po(xV X (IxP |
=|=| =2 =|7.| but since
y y |y

therefore taking positive square root of both sides, we have

(iii)

are both non—negative,

‘x
and |
y

i
y

X

¥

X

, when 0.
y w y #

Theorem 1.6.8. Triangle inequalities. For all real numbers x, y, show that

(1) [x+y|=|x|+]|y]| and () |x=y[=]x[—]yl
(1) |x+y|2 =(x+y)2=x2+y2+2xy

<|xP+|y P +2/x||y] [ xy<|xy|=|x|y]]



=(|x|+]y]?

Since | x + y | and | x | + | y | are both non—negative, therefore, taking roots on both
sides, we have

|x+y|<|x|+]y]
(ii)|x—y|2=(x—y)2=x2+y2—2xy
= x> +]y*|-2|x] y| [ =)= —|xp|=—]x|—|»]]

2 2
=(x[=ly)=llx[=]yl

Since | x —y | and || x | — | v || are both non—negative, therefore taking the positive
square root of both sides, we have

[x=yl=z]x|=]yl
EXERCISE
l. |[x|=0ifx=0
|x—y|=0ifx =y
lx +y+zllyl+]z]

If|x—al|thena-x<a+ € andx— € <a<x+ .

wok »wn

If x, y aarereals suchthat | x —a|< e and | y—a|< €. Then | x — y <
2e.

1.7. INTERVALS-OPEN AND CLOSED

A subset A of R is called an interval if A contains (i) at least two distinct elements
and (ii) every element lies between any two members of A.

Open Interval : If a and b are two real number such that a < b then the set
{x :a<x<b}

insisting of all real numbers between a and b (excluding a and b) is called an open
interval d is denoted by ]a, b[ or (a, b).

Closed Interval : The set {x - a < x < b} insisting of a, b and all real numbers
lying between a and b is called a closed interval and denoted by [a, b].

10



Semi-closed or Semi—open intervals.
la,b]l = {x : a <x < b}
[a, B[ = {x . a < x < b}

The intervals are semi—closed or semi—open. The former is open at a and closed at
b while the latter is closed at a and open at b.

Now we define infinite intervals.

(1) The set of all real number x, satisfying x=a is denoted by [a, o ].

Thus [a, o] = {xeR : x = a}

(i1) The set of all real numbers x, satisfying x > a, is denoted by (a, «).

Thus (a, o) ={xeR : x > a}

(iii) The set of all real numbers x, satisfying x > a, is denoted by (-, a].

Thus, (—x, a) = {xeR : x < a}

(iv) The set of real numbers x, is denoted by (—o, o). Thus (-, ) = R.
1.8. COMPLETENESS

The properties of R. listed up till now do not enable us to distinguish between of real
numbers and the set Q of rational numbers in as much as both these sets fields.

We now propose to state one more property (and this is last property of R) which
will serves to distinguish between the sets R and Q. This property, known as order
completeness (or simply completeness) is base on the notion of an upper bound of a set
of real numbers.

Definition 1.8.1. Let S denote an non empty set of real numbers. A real number b,
where b is not necessarily in S, is called an upper boundfor S if x < b for every x in
S.

Examplel.8.2. Let S = {1, 3, 5,7}. Then 7 or any number greater than 7 will serve
as an upper bounds of S.

Not all subsets of the real numbers have upper bounds.

Examplel.8.3. The set S = {x/x is positive} does not have an upper bound, because
if b is an upperbound for S. then 0 < 1> b, since I&S. Now b+ 1> b >0, s0 b +1
is positive, and therefore in S and b + 1 is greater than the proposed upper bound b. This
contradicts the definition of upper bound.

Sets which have an upper bound are said to bounded above.

11



Definition 1.8.4. A real number c is called the last upper bound (abbreviated l.u.b.)
or supremum of a set S if.

(1) ¢ is an upper bound for S, and

(i1) for any upper bound b other than ¢, b > c.

Examplel.8.5. (i) 7 is the l.u. b of a set S (bounded above) is unique.
(i1) 1 is the Lu.b for the set {............. }.

Solution of Uniqueness. Suppose b and ¢ are upper bounds for S. If b % ¢, then
b < c or ¢ < b by the law of trichotomy for order relation Consequently b and ¢ both
could not be least upper bound.

1.9. BOUNDED AND UNBOUNDED SETS : SUPREMUM, INFIMUM

A subset S of real numbers is said to be bounded above if 3 a real number k£ such

that every number of S is less than or equal to k i.e. x<k, VxES

The number £ is called an upper bound of S. If no such number £ exists, the set
is said to be unbounded above or not bounded above.

The set S is said to be bounded below if a real number & such that every member
of S is greater than or equal to &, i.e. k<x, VxE&S

The number k is called a lower bound of S. If so such number £ exists, the set is
said to be unbounded below or not bounded below.

A set said to be bounded if it is bounded above as well as below.

It may be seen that if a set has one Upper bound, it has an infinite number of upper
bounds. For, if k is an upper bound of a set S then every number greater than k is also
an upper bound of S. Thus every set S bounded above determines an infinite set—the set
of its upper bounds. Similarly, a set S bounded below in a much as every member of S
is a lower bound thereof .Similarly, a set S bounded below determines an infinite set of
its lower bound, which is bounded above by the members of S.

A members g of a set S is called the greatest member of S if every member of S
is less than or equal tog, i.e.

@) geS (i) x<g,V¥x€S

Similarly, a member g of the set of its smallest (or the least) member if every
member of the set is greater than or equal to g.

Clearly, a set may or may not have the greater or the least member but an upper
(lower) bound of the set, if it is a member of the set, is its greater (least) member. A finite

12



set always has the greatest as well as the smallest member.

If the set of all upper bounds of a set S has the smallest members, say M, then M
is called the least upper bound (/, #, b) or the supremum of S.

Clearly, the supremum of a set S may or may not exist and in case it exists, it may
or may not belong to S. The fact that supremum M is the smallest of all the upper bounds
of S may be described by the following two properties.

(i) M is the upper bound of S, i.e. x<M, Vx&€S

(i) No number less than M can be the upper bound of s, i.e. for any positive number
€ however small, 3 a number ye S such that y > M - &

Again it may be see that a set cannot have more than one supremum. For, let it
possibleM and M’ be two supreme of a set S. so that M and M’ are both upper bound
of S.

Also M is the Lu.b. and M is an upper bound of S.

M< M
Again M’ is the Lu.b. and M is an upper bound of S.

M <M -.(2)
From (1) and (2), it follows that M = M’.

If the set of all tower bounds of a set S has the greatest member, say m, then m is
called the greatest lower bound (g./.5) or the infimum of S.

Like the supremum, the infimum of a set may or may not exist and it may or may
not belong to S. It can be easily shown that a set cannot have more than one infimum.

The infimum m of a set S has the following two properties.
(1) mis the lowest bound of S, i.e. m < x, Yx&S

(i1) No number greater than m can be a lower bound of S, i.e. for any positive
number, however small, a number z& S such that z < m + .

1.9.1. Illustrations :

1. The set N of natural numbers is bounded below but not bounded above. 1 is a
lower bound.

2. The set I, Q and R are not bounded.

3. Every finite set of numbers of bounded.

13



4. The set S; of all positive real numbers S; = {x : x > 0, x& R} is not bounded
above, but is bounded below. The infimum zero is not a member of the set S;.

5. The inifinite set S, = {x : 0 <x <1, x&R } is bounded with supreme 1 and
infimum zero, 1 both of which do not belong to S,.

6. The infinite set S; = {x : 0 < x < I, x& Q} is bounded, with supremum 1 and
infimum 0 both of which are members of S;.

7. The set S = {l:nEN} is bounded. The supremum 1 belongs to S, while
n

infimum 0 does not.
8. Each of the following intervals is bounded : [a, b/, Ja, b], [a, b/, ]a, b/.
1.9.3. COMPLENTENESS IN R.

We have already established that (R, +, ., <) is an ordered field. All these properties
of ordered / are also satisfied by the system of rational numbers. Thus we can that (Q,
—+, ., )is also ordered field. Now we state completeness axiom in R, which distinguishes
the system of real numbers from the system of real numbers.

Completeness axiom in R. Even non empty set S of real numbers, that is bounded
above, L.u.b in R. It is called least upper bound property of R. Due to this least upper
bound property, R, the set of reals, is said to be complete ordered field.

Now, we shall show that the property of completeness does not hold good in case
of ordered ofrational numbers.

Theorem 1.9.4. The set of rational numbers is not a complete ordered field.

Proof. In order to show that the set of rational numbers Q is not a complete ordered
field, it will coefficient to show that there exists a non empty set S of rational i.e. SC Q

which isbounded but its Z.u.b does not belong to Q i.e. there is no rational numbers which
is Lu.b of S.

1.10. EXAMINATION ORIENTED EXERCISE/LESSON END
EXERCISE

1. Give several real numbers which serve as upper bounds, and lower bounds, for
each of the following sets :

(a) S = {23 7, 739 0, 8}
(b) S = (x/x = n? + 2 where 7 is a natural number less than 4}

2. Find Supremum of each of the following sets :

14
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(@) S = {3, 4} (b) S = {1,5,5
{+1 +l +l }
(C)S= T , T 3,71: 3, .....

3. Find the infimum of each of the following sets :

4. Which of the following sets are bounded below, which are bounded above and
which are bounded neither below nor above:

(a) {1, 2,3, 4. (b) {1, -2, -3, ...}

5. Prove that between two rationals, there lies another rational.

+
6. Prove that atb

> «Jab i.e. arithmetic mean > Goemetric mean.

Hint : (¢ — b)? > 0 for any real numbers a and b.
7. For any acR if a > 0, then ! > 0.
8. (i) Give an example of a set which is not a field.

(i1) Give an example of a field which is not an ordered field.

(ii1) Give an example of afield which is not complete, justify you answer.
9. Give an example each of a set :

(1) Which is bounded above but no bounded below.

(i1) bounded below but not bounded above.

(ii1) bounded.

(iv) neither bounded above nor bounded below.

10. Find Lu.b. g.lb, if exists.

15



1 2x+1
i) {n: :nEN} (ii) {xx++5 :|x|<2}

(i11) {2x+x:x5x51} (iv) {—\/1—4x2 :|x|5%}

2—x

11. Prove following sets are bounded :

=D"n 1
) { it '”EN} (i) {nzH:"EN}

1.11. SUGGESTED READING

The students are advised to go through following references for details.

1.12. REFERENCES
(1)  Real analysis by by J.N. Kapur & H.C. Saxena, S.Chand & Co.

(2)  Real analysis by J.N. Sharma & A.R.Vashishtha,Krishna Publication, New
Delhi.

(3)  Real analysis by Richard R. Goldberg, Oxford & IBH Publication Co. Pvt.
Ltd. New Delhi.

(4) A text Book of Real Analysis by Sunil Gupta, Narinder Kumar, Malhotra
Brothers Pacca Danga, Jammu.

(5)  Real analysis by Jagdish Parsad Mittal & Neeraj Doda, Sharma Publication,
Jallandhar.

1.13. MODEL TEST PAPER

Q. 1. (i) Give an example of a set which is not a field.

(i1) Give an example of a field which is not an ordered field.

(iii) Give an example of afield which is not complete, justify you answer.
Q. 2. Give an example each of a set :

(i) Which is bounded above but no bounded below.

(i1) bounded below but not bounded above.

(iii) bounded.

16



(iv) neither bounded above nor bounded below.

Q. 3. Find Lu.b. g.Lb, if exists.

n+l1 2x+1
i ‘nEN i) 17— |x|<2
(1){ i n } (H){x+5 | x| }
2x + / 1
(iii) { al x:xSxSl} (iv) {— 1—4x? :|x|$—}
2—x 2
Q. 4. Prove following sets are bounded :
=D"n 1
(1) { n+1 n (11) n2+1nEN
skeskeskesieskokeskekok

17



B.A. SEM-1V MATHEMATICS LESSON No. 2

SEQUENCE

2.1. Introduction: In this lesson the concept of sequence of numbers is discussed.

2.2. Objectives: Objective of studying this lesson is to explain how a sequence of numbers
converges or diverges. Also the properties of these convergent sequence are discussed.

2.3. SEQUENCE

2.3.1. Definition: A sequence is a function whose domain is always the set of natural
numbers and range is a subset of R i.e. sequence is a function f: N -» A, ACR.

Notation : Sequence is generally denoted by {f,} or {f (n)}

2.3.2. Range : Let f: N - A be a sequence, then the set {f (n) : n& N} is called
a range of a sequence.

2.3.3. Example
{1,-1, 1, -1, 1, —1............ } with range = {1, -1}

1 11 1
15 E, E,Z ............ with range = ;:nEN

{1, 2, 4, 8, 16,....... } with range = {2"’1: ne N}

{1+, 1+2, 1 +3i, 1 + 4 } is not a sequence because its range
is

{1 + ni such that ne R} ¢ R
2.4. CONVERGENT SEQUENCE

A sequence {f,} is said to converge to a number I (ICR), if for € >0, da, mEN
such that |/, —/[<€, Voz=m

18



Symbolically, we write it as
lim f =1

n—>00

1
2.4.1.Example : Show that {;} converges to zero

or

1
Prove that ;90 asn-—>o,

n

1
Solution : Let s — 1 ]=0. Toshow —=0ie f =l Let€>0
fy= . .

1 1
Consider |fn—l|=‘——0‘: ==
n n n
o1
| f =l|<€g,if —< €
& n
/ i 1
|fn_ |<€,1 f’l>E
1| <€, if _1
|/, —1I<&i n>m,m—€
1 .1
= f =l > —>0 o lm—=0
n n n—-owon
lim 3n+4_§
2.4.2. Example: Show that m 2 5
3n+4 3
Show 5,_o ([ converges to 5

Solution let f =, 1=

19



3n+4 3
d

i -/
We show Sh—2 5 Le a
Consider |/ —1]= 3n+4 3|_|15n+20=15n+6| | 26 | 26
onsiger n 5Sn—2 5 5(5n—2) 5(5n=2)| 5(5n—2)
26
<gif —<e
5(5n—2)

<€if 26<5(5n—2)€

<€if£<5n—2
5€
<€if£+2<5n
5€
1(2
<Eif—(—6+2)
5\5€
<Eifn>l(§+z)
5\5€

1(26
<Eifn>m,m=§(—+2)

5€e
1(26
_I|<Eif n>m, where m=— |~ +2
= |fn | if n>m, where m 5(56 )
3n+4 3
-/ -
> Lyhor 5Ty

1 1
2.4.3. Example. Show that % »1 or (y)n ] or lim ()" =1,

n—>0oo

Solution. To show 4/ »1

20



Let £, =%n—1,1=0

1
We show f, =0 = 1+fn:}\1/>:(”)n
Raise power n to both side, we get

n=+f) =l+n O f +n O f 4o
1 2

n(n—1)

2 n
S e,

=l+nf +

In particular,

2
or /o<

<=*x
f” n—1

/ 2
i
n—1

2
| f | <E€if ——<€?
n n—1

2
n—1

/1<

2
<Eif—2<l’l—1
€

21



2
<€if—2+1<l’l
€

2
<€if}’l>—2+1
e

. 2
<Elfn>m,m=—2+1
(S

. 2
| f<€ifn>mm=—+1
n EZ

2
|f —0|<€ifn>m m=—+1
n EZ

=> f =0

n

1
- (mm =0

> Yn -1
2.4.4.Theorem : Show that every sequence converges to unique limit.
or

Prove that every convergent sequence converges to one and only one point.

Solution : Suppose {f,} converges to / and /', we show [=/'
Assume [#]" = [=]I'#20 = |[[=-]'|>0
Let €=|/-1I"|. Clearly €>0

As f, =1, so for €>0,3m €N guch that |f, —/I<E€/2, Vn>m

=
Also, f, =!', so for € >0,3m, € Nsuch that Ifn—1'|<3, Vn>m,

n
Choose &k =min(m,, m,)

22
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Consider  |1=1'|=|U~f)+(f, =D
<|1=f |+]f, =

e €
<?+E’ Vn=k and using (1) and (2)

=c
[I=1"|<|l=1"| wusing value of &€ which is not possible
Supposition is wrong.
Hence /= = {f,} converges to unique limit.

2.4.5.Exercise : Prove that every convergent sequence bounded but converse need
not to be true.

Solution: Suppose {f,} is a convergent sequence. Let f, - 1

This means, for € >0 Im € N, such that |fn—l|<€, Vnzm

I—E<fn<l+e, Vnz=m (1)

Let k=min{f,, f,,..f, _, (=€} and K =maxify, fo, f3, fyf, | I+ E}
Clearly, using this and (1) we see that

k<fn<k’, VrnEN

> {f,} is bounded.
(Definition of bounded sequence {see below})

Conversely, suppose {f,} = ()1 = {1, 1, =1,1,.......... }

Clearly, {f,} is bounded —1=f <L Vn€&N

But lim / is either 1 or —1 which is not possible.

n—>oo
As sequence always converges to unique limit
{f,} 1s not convergent.
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2.4.6. Bounded above Sequence A {f } is said to be bounded above if there exist
a real number M R such that set /, =M, VnE€N

2.4.7. Bounded below Sequence A {f } is said to be bounded below, if there exist
a real number me R such that m=f ,Vn&N,

2.4.8.Bounded Sequence A {f } is said to be bounded below, if there exist a real
number m, MR such that m=f =M, VnEN,

Example : {1,
land M = 1. Then -1< f, <1, Vn eN.

Example : { 1-1,1,-1,1,-1,....... } is a bounded sequence as —lsfn <1, Vn.

Example : {1, 2, 3,.....} is bounded below as —lsfn, VneN.

But it is not bounded above as there doesn’t exist any me& R such that
m an, VneEN.

Example : {............ —4, -3, -2, —1} is bounded above.

Here, f, =—1,VnEN but there doesn’t exist m €R , such that m=f ,VnEN,

2.4.9. Exercise : Suppose f, =/, g, = m, then show

(1) fn+gn—>l+m (ii) fn—gn—>l—m
VA
(iii) 577, (iv) 1,8, =>m
n
or

if lim fn =/, lim g, =m then

n—>00 n—>o0
() mf, g, =l+m iy m(f,=g,)=l=m

24



. 1 .
(iif) lim t=— m=#0 (iv) lim fngn =Im

n—>oo gn m n—>oo

Solution : (i) To prove f, +&, =I+m_ Let €>0
Consider |(f, +g,)—(U+m)|=[f —l[+|g, —m]|

As f,=1 sofor €>0,3m,EN such that

S
|fn—l|<?, ‘v’an1

Also, &, >m, so for €>0, dm, EN such that

S
|gn—m|<?, Vn2m2

Choose K = min (m, m,)

Use (2), (3) in (1)
I(fn+g,,)—(1+m)|<%+%, Vn=K
I(f, +g)—(U+m)|<€E, VnzK
> f,tg,>l+m
(i) Let €>0
Consider |(f, =g,)—(U=m)|=|(f, —D)=(g,—m)|
=1/, ~+|(=D(g,—m)
[/, ~l+[(=D(g,—m)]

As f, =1 so for €>0,3m €N guch that

25
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€
Ifn—l|<5, Vnz=m (2
Also &, =>m so for €>0,3m, EN such that
€
Ign—m|<5, Vnzm, ..(3)

Choose k =min(m,, m,)
Use (2), (3) in (1)

e €
(f, =g,)=~U=m)| <5+ Vnzk

I(f, —g,)—(U-m)|<€E, VYnzk

=> fn—gn—”—m

(iii) Let € >0

/,

n

/ fnm—lgn fnm—lm +lm—lgn

g, m g,m g,m

Consider

m(f, =) +(=1)(g, —m)

g,m

m(f, =) (~I)(g, —m)
+

g,m g,m

m(f, =) (~I)(g,—m)
< +

| g, m g m
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-] |-, =m)
= +
o || em |

_1U, =1 11l =m)
g | g, lIm

As {g,} 1s convergent, so it is bounded, means Ik, k'ER

k<g <k', VmneN
n

1 1 1
- —=z—z=—
k g, k
r_r_1
= K gk
1 1 1 1
—<- > — < .
=> g, k ‘gn| k| use in (1)
Q_l S\fn—1|+|1||gn—m| ,
g m| |kl |kim]| ~(2)
€|k
As f -/ 5o for €>0, Am ENsuchthat|f —l|<—, VYnEm (3)
n 1 n 2 1
Elk|m]| v
Also g, —>m,sofor €>0,3m, EN such that [&, ~m|< 20 €Em
Let m0=min(ml,m2)
Use (3), (4) in (2)
/oo 1 €kl |l E€|k||m|
— | <— + nzmg
g, m| |k| 2 |ml k| 2|7
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o1

—_— s —

g, m

(iv) Consider | f,g, —Im| =|f g —f,m+ [ m—Im|
=1/ (g, —~m)+m(f, =]
<|/ (g, —m)|+|m(f,~D)

=1 Ilg,—m|+|m||f,~1|
As {f,} is convergent.

Sequence, so it is bounded, so Jk, k' ER such that k= [ <k',VnEN

ie. f,SK = |f <K
Use in (1)

| f.g, ~Im|<|K'||g, —m|+|m|| f,~1|

As f, = so for €>0, Im €N such that

S
‘fn—l‘<m, Vanl

Also g, > m so for €>0,3dm, EN such that

S
g, —m|s—— Vnzm

21k 2
Choose m, =min (m,, m,)

Using (3), (4) in (2), we get
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€ e
—Im|<|k' +|m , Vn=m
8, =i <1 5 = '
e €
<—+—=€
2 2
= |fngn—lm|<E, VanO
> fngn*lm

2.4.10. Note : The converse of the above expression need not to be true i.e.

If {f,},1g,} be sequence such that their

(1) sum (2) difference (3) product

(4) quotient are convergent but sequences {f,},{g,} need not to be convergent.
Solution : (1) Consider {f,} = {1, -1, 1, -1,.....} and {g,} = {-1, 1, -1, 1,.....
Clearly their sum {f + g } = {0, 0, 0, 0......... } - 0

But neither {f } nor {g } is not convergent.

(2) Let {f,} ={1, -1, 1-1, 1, -1....} and {g,} = {1, -1, 1-1, 1, —=1....}

Then {f, — g,} = {0, 0, 0, O......... } - 0

But neither {f } nor {g,} is convergent.

(2) Let {f,} =11, -1, 1, -1, 1, —1,............. }

and g,y =1L, -1, 1, -1, 1, —L............ }

and {f, —g,} =1{0,0,0,0........... } -0

But neither {f } nor {g } is convergent

(3) Take {f,} = {1, -1, 1, —1,.cc....... }

and g, = 1,1, -1, L }

= g, = -1, -1, -1, -1......... } > -l,asm »
But neither {f } nor {g,} is convergent

(4) Take {f,} = -1, 1, =1, 1 }

And g, = 1L 1, —1, L }



S
= g 2{1,1,1,1, ...................... }—>1,asn—>oo

But neither {f } nor {g } is convergent.

2.5. EXAMINATION ORIENTED EXERCISE/ LESSON END
EXERCISE

Q.1. Prove that every convergent sequence bounded but converse need not to be
true.

Q.2. Define convergent sequence prove that is convergent sequence & converging
to 1.

Q.3. Suppose /.

, =1 g, =m_ then show

(i) fn+gn—>l+m (ii) fn—gn—>l—m
f, 1
(i) & 7%, (iv) f,g,=Im

Q4. If {f,}, {g,} be sequence such that their
(1) sum (2) difference (3) product

(4) quotient are convergent but sequence {f,}, {g,} need not to be convergent.
2.6. SUGGESTED READING
The students are advised to go through following references for details
2.7. REFERENCES

(1) Real analysis by by J.N. Kapur & H.C. Saxena, S.Chand & Co.

(2) Real analysis by J.N. Sharma & A.R.Vashishtha,Krishna Publication, New
Delhi.

(3) Real analysis by Richard R. Goldberg, Oxford & IBH Publication Co. Pvt. Ltd.
New Delhi.

(4) A text Book of Real Analysis by Sunil Gupta, Narinder Kumar, Malhotra
Brothers Pacca Danga, Jammu.
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(5) Real analysis by Jagdish Parsad Mittal & Neeraj Doda, Sharma Publication,
Jallandhar.

2.8. MODEL TEST PAPER

Q.1. Prove that every convergent sequence bounded but converse need not to be
true.

Q.2. Define convergent sequence prove that is convergent sequence & converging
to 1.

Q.3. Suppose f, >/, g, > m, then show

(1) fn+gn—>l+m (ii) fn—gn—>l—m
f, 1
(i) & 7%, (iv) f,g,=Im

Q4. If {f,}, {g,} be sequence such that their
(1) sum (2) difference (3) product

(4) quotient are convergent but sequence {f,}, {g,} need not to be convergent.

skskeskskskoskokok ok
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B.A. SEM-1V MATHEMATICS LESSON No. 3

MONOTONE SEQUENCE

3.1. Introduction : In this lesson the continuation of convergence of sequence of functions
are discussed.

3.2 Objectives : Objective of studying this lesson is to give idea of which sequence is
increasing & decreasing. Also the concept of famous Nested Interval Property/ Cantor
intersection theorem are reported in this lesson.

3.3. MONOTONE SEQUENCE

3.3.1. Monotone Increasing : A {f, } is said to be monotone increasing
If nzm, f <f

3.3.2. Decreasing sequence : A {f } is said to be decreasing if fn > fn+1, VneN

1 2 n nl+1

. e
A {f,} 1s decreasing, if n=m, then fm > fn'
3.3.3. Monotone decreasing : A {f,} is said to be monotone decreasing if n=m
then /, =/, .

3.3.4. Monotone : A sequence which is either Monotone increasing or Monotone
decreasing is called a monotone sequence.

3.3.5. Examples

Ly, = {n} =1{1,2,3,4,5,... } is an increasing sequence

88 1< f5< f3< fperrrrrrn L for e

32



aSf<h<[=L=<[<Js=/ <N

111
3.4 = {1,5,5,2, ---------- } is decreasing,

Sincef1>f2>f3>f4> ...............................

4. ) = (1 = {1, -1, 1, —1,......... } is neither increasing nor decreasing
because

J1 26 <> fa S5

3.3.6. State And Prove Monotone Convergence Theorem. Every Monotone
increasing bounded above sequence is always convergent

Proof: Suppose {f,} is monotone increasing & bounded above sequence. We show
f,} 1s convergent.

As {f,} 1s Monotone increasing, so for n>m, we have f, < f, (1)
also {f,} is bounded above, so, let / is Lub of {f } = f, <!

Let € >0

Then f, <I<l+ € ...(2)

As 1 — € <[ so there exist so many entries between [ — e and /.

Let one of these entries be f, ie. 1 - e <f, <1

l-e<f, <l
1-e<f,
Combine with (1), we get
l—e<fu</y
or - e </, ..(3)

Combine (2) and (3), we have

l—e<f,<l+ en>m
= | fo—1ll<e Vno>m

= fo—1
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3.3.7. Corollary : Every monotone decreasing and bounded below sequence bounded
is convergent

Proof : Let {f,} be m.d and bounded below, then {-f, } becomes monotone increasing
+ bounded above.

Hence, by above theorem {- f,} is convergent
— {~f,} 1s convergent implies {f } is convergent.
3.4. CAUCHY SEQUENCE

3.4.1. Definition : Cauchy sequence : A sequence {f,} is said to be a Cauchy if e
>0, 3meN such that |f, - f,|<e€ Vnzxm

or

A {f,} is said to be Cauchy if € >0, 3 p e N suchthat | f, — f,, <€ Vn,m>p.

Notation : If {f } is Cauchy, then lim | f, - f,, |=0.
n— 0

m—» 0
1 .
3.4.2. Example PRt Cauchy.
1 1
Solution : f,=— = f,=—
n m
. . 1 1
lim|f,-f,|= lim |———|—0
n—» o n,m—o| n m
m—» 0

Example : Take {f } = {n?}, then it is not Cauchy.

Since lim | f, = f, [=1n"=m*|=0 40

n,m-— 0
3.43. Example : {f } = {-1, 1, -1, 1o, }, then

fi—Ll=11-CED =2 —+—0
3.4.4. Theorem : Every convergent sequence is Cauchy.

Proof : Suppose {f,} is a convergent sequence.
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Let it converges to [ i.e. f, — I

This means, € > 0, I3m € N such that

Ifn—l|<§, Vnzm (1)

As (1) is true for all 5 > m

(S

In particular, for n = m ie. | /f, —1]< 5 -(2)
Consider | f, — f, | = f, =1 +1— [, |
S| fu =+ = 1y |
e €
<5+5, Vn>m (Using (1) and (2))

= {f,} is Cauchy

3.4.5. Exercise : Prove that every Cauchy sequence is bounded.

Solution : Let {f,} be a Cauchy sequence. Then for €>0, 3m € N such that
| fu—fml<e VYnzm
Jm—€<fu<futes VYnz=m (D)
Let k=min{f], f5,.cceo. Jm-1> fm— €

k'=max {f], fr,.e--. Sm-1> fmt €
Using (1) we see k< f, <k', VneN

= {f,} is bounded.
3.6. BALZANO WEIRSTRASS THEOREM

3.6.1. Statement : Every infinite bounded sequence has a convergent subsequent.

3.6.2. Theorem : Every Cauchy sequence is convergent.
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Proof : Let {f,} be a Cauchy sequence. For € > 0 3 m € N such that

|fn_fm|<§s Vnzm (1)

As {f,} is Cauchy sequence, so it is bounded.

Let S={f,:neN}.Then S is an infinite bounded set.
Then by B.W theorem, {f } has a convergent subsequence say i, nk}

As {fnk } is convergent subsequence. So, let it converges to / i.e. fnk -1

S
Then for € >0, Ip eN such that |f,, —Z|<§, Vo 2p (2

€
Let If m > n; from (1), |/fm = /y |<§, nzn

Consider | f,, —1|

S|fn_fm|""|fm_fnk |+|fnk_l|

€ € «€
<—+—+—<¢g Vnzm
3 3 3

= f, o1

{f,} is convergent.

3.6.3. Remark : Every bounded sequence need not to be Cauchy
Proof : Take {f} = {(-1)"'} = {1, -1, 1, ~Lueecco.u.. }
Clearly, {f,} is bounded sequence as -1 < f, <1, Vn >N

But {f,} is not Cauchy as | f{ = f5[=|1 - (1) [=2 40

3.7. NESTED INTERVAL PROPERTY OR CANTOR INTERSECTION
THEOREM

3.7.1. Nested Sequence : A sequence {I } where I = [a,, b,], Vn €N of closed

intervals is said to be a nested sequence if either [, <1, or [ 51 ,,, Vn eN.
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3.7.2. Statement : Let {I } where I, = [a,, b,], Vn €N be such that

(i) {L,} is nested

[e0]
(i) lim [1,|=0, then N1, #¢
n—» 0

n=1

Proof : (i) Let {1}, where [, = [a,, b,], Vn €N be nested

This means, [, 51,4, VneN
ie. 11312313 ............ DInDIn-H ........................
[ [ [ 1 1 | ]
L L L T ¥ I 1

a dn adns1 bn+1 b

NY4

= [a;, bilo [ay, byl o > la, blola,, b,]lo ..
From diagram, it is clear that a; < a, < az............ <A< Ay e
Now, from the diagram, we see

a; < ay < ay <...... <a <a
ie. a,<b;, YneN = {a,} is bounded above.

Since {a,} is increasing and bounded above, it follows by monotone convergent
theorem {a,} is converges to /

ie. a,—~ [ or lima, =1 (1)
n—» o

Again, from diagram, we see

by>by> by > b
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= {b,}is decreasing

Also by > by > by >......... > a;
= b,>aq

= {b,} is bounded below

As {b,} is decreasing and bounded below, it follows that {b,} is convergent

Let it converges to m i.e. b, — m or lim b, =m ..(2)
n—> 0

It is given lim |/, [=0 ie lim |[a,, b,]| =0
n—®© n— o0

lim (b, —a,)=0

n— 0

lim b, - lim a, =0 lim g, = lim b,
n— o n—> ™ n—> n— o

(I = m)
{a,} and {b,} converges to same limit

= a,>1<b,

= a,<1<b,, VneN [because convergent sequence are bounded]

n»

= [l€la,, b,], VheN

1

n
_j } is convergent and converging to e, 2 < e < 3.

3.7.3. Example Show that {[1 A

or

. 1"
Prove that lim [1+—) =e,2<e<3

n—ow n
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1 n
Proof let f, = [1+;)

To show {f } converges to e, we show
(1) {/,} 1s monotone increasing

(i) {f,} 1s bounded above.

1 n
Here f, = [1+—)

n

= )"+, ()" @ #g, (0" @2 Foet g, (O @

:H[ﬁ]+n(n—1)i+n(n—1)(n—2)L+ ....... =D =D.
n 2t p? 3! n n!

:1+[ﬁj+Ln<n—l>+in<n—l><n—2>+ +L[n(n—l)(n—2).

n 2! n.n 3! non 7 n! n.n.n..

e ), o

=1+1+i(1—l)[1—3j+ .......... +[1—”_1j
21! n n n

= Jp>2 or 2< f,

Consider

fn+1:1+1+i[1— 1)+i(1— 1][1— 2 )+ ...... + ! (1— !
21 n+l/ 3! n+l n+1 (n+1D! n+l

[l_nilj+ """"" +(nil)![1_nilj(l_nilj """" (l_n’j—lj

On comparing each term of f, with each term of /|, we see
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1 1 1 1
n<n+l = —> =

n n+l n n+1
— 1—l<1— !
n n+1
.. 2 2 n—1 n
Similarly, I ——<1- ,and so on 1-— <l-
n n+1 n n+1

We see f, < f,.1, VneN

= {f,} is monotone increasing

1 2 —
Also, we know 1—-—<1, 1-—<1_ ... 1- <1
n n n

Use this in (2)

f, < 1+1+%(1)+%(1)(1)+ ........ +i(1)(1).(1)

—1+(1+l+l+ +i]
= St 0 (%)
1 1 1
in 6>4 > —<—o —<—
Again 54 6 2
1 1
And so on ﬁ<2n_1
Use in (4)
<141 1 1
Jp <1+ +§+2_2+ ........ +2n_1
(1-3)
2
=1+
11
2 2
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1
= fn§1+2[1—

1
<
2)1—1

=3_

2

3 = {/ua} is bounded ab ove.

Since {f,} is monotone increasing and bounded above,so by monotone increasing the

sequence {f } is convergent.

Take lim to both side

n— o

lim f, <3

or n—> 0

Consider (2), (5) we see

lim f, < lim [3— 1 ]=3
n—®

n—» o 2n—1

2< lim f, <3

n—

or n—®

lim f, =e, where 2<e<3

1n
or lim [l-f-—) =e,2<e<3

n—ow n

1
n

n
= {[1 +_) } is convergent, converging to e, 2 < e < 3.

(5)

3.8. EXAMINATION ORIENTED EXERCISE/ LESSON END

EXERCISE

Q.1. Prove that every Cauchy sequence converges iff it is convergent.

Q.2. State & prove Monotone convergence Theorem.

3.9. SUGGESTED READING

The students are advised to go through following references for details
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3.10. REFERENCES
1. Real analysis by by J.N. Kapur & H.C. Saxena, S.Chand & Co.

2. Real analysis by J.N. Sharma & A.R.Vashishtha,Krishna Publication, New
Delhi.

3. Real analysis by Richard R. Goldberg, Oxford & IBH Publication Co. Pvt. Ltd.
New Delhi.

4. A text Book of Real Analysis by Sunil Gupta, Narinder Kumar, Malhotra
Brothers Pacca Danga, Jammu.

5. Real analysis by Jagdish Parsad Mittal & Neeraj Doda, Sharma Publication,
Jallandhar.

3.11. MODEL TEST PAPER

Q.1. Define a Cauchy sequence & Show that sequence 1/n is a Cauchy sequence.

Q.2. State & prove Monotone convergence Theorem.

n"| . :
Q.3. Prove that {(1 +—] } is convergent and converging to e, 2 < e < 3.
n

Q.4. Prove that every Cauchy sequence is convergent.

Q. 5. Prove that every convergent sequence is Cauchy.

skeskeskeskeskokekokek

42



B.A. SEM-1V MATHEMATICS LESSON No. 4

INFINITE SERIES

4.1. Introduction : In this lesson the concept of infinite series of functions are
discussed.

4.2 Objectives : Objective of studying this lesson is to familiar students about the
concept of positive infinite series..

4.3. INFINITE SERIES

A series of the type f] +/, + f3 +......... is called an infinite series. It is denoted by
o0
z S, or Z In
n=1

If all terms of series are positive, then it is called a series of positive term.

4.3.1. Sequence of partial sum : Let an =+ H+ 3+ be infinite
series
Consider S, = f]
S, =hH T /1

S;=hthTh
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then {S,, S, .S;,

} is called sequence of partial sum.

4.4. CONVERGENT SERIES

Let Z Ju be an infinite series with {S } be sequence of partial sum where

We say, Z Ju converges to [, if {S } of partial sum converges to /

ie if lim S, =/then Y f, —>I.

n— 0

o0
4.4.1. Example : Show that series z ! is convergent

-1
n:12n
- 1 11 1
Solution : ——=l+—+—+....+ o
-1 )
lim S, = lim — 2. Loed=r)
n— oo n—)oo1 l:l 1-r ’
2 2

~—

= lim 2(1—L
n— o0 2"
Here, S, — 2

o0
So, series ; also converges to 2.
12"
n=1

o0
4.4.2. Example : Show that series z n is divergent.

n=1
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o0
Solution : Here, S = >, n = 1+2+3 +....... +n
n=1

Sy
S

n

,S,=1+2,8=1+2+3

Il
—_
+
\S)
+
w
+
+
S

lim S, = lim (I1+2+3+...+n)
n—© n—©

 lim n(n+1)

n— 0
o0
{S,} diverges, so zln also diverges.
n=
o0

4.4.3. Example: An infinite series z u, is convergent, then u, — 0 as n — .

n=1

But converse need not to be true.
4.5. COMPARISON TEST

4.5.1. 1st comparison test

Let Zun be an infinite series

Choose, Zvn such that

u

I T .

(i) lim = a finite number
n—» 0 Vn

(i1) u, <v,, Vn eN. Then, Zun is convergent. If ZVn is converget.
4.5.2. 2nd comparison test

Let Zun be an infinite series.

Choose, Zvn such that
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u

. 1 _n _ .

(i) lim = a finite number
n—o vV,

(i) u, >2v,, VneN

Then, Zun is divergent if Zvn is divergent.

4.6. EXAMINATION ORIENTED EXERCISE/ LESSON END
EXERCISE

o0
Q.1. Show that series z 2n is divergent.

n=1

Q.2. State 15t Comparison test.

Q.3. state 2"d Comparison test.
4.7. SUGGESTED READING

The students are advised to go through following references for details
4.8. REFERENCES

(1) Real analysis by by J.N. Kapur & H.C. Saxena, S.Chand & Co.

(2) Real analysis by J.N. Sharma & A.R.Vashishtha,Krishna Publication, New
Delhi.

(3) Real analysis by Richard R. Goldberg, Oxford & IBH Publication Co. Pvt.
Ltd. New Delhi.

(4) A text Book of Real Analysis by Sunil Gupta, Narinder Kumar, Malhotra
Brothers Pacca Danga, Jammu.

(5) Real analysis by Jagdish Parsad Mittal & Neeraj Doda, Sharma Publication,
Jallandhar.

4.9. MODEL TEST PAPER
Q.1. Define an infinite series & show that how it converges or diverges.
Q.2. State 15t Comparison test.

Q.3. State 2"d Comparison test.

skskskskskoskokok ok
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B.A. SEM-1V MATHEMATICS LESSON No. 5§

p - SERIES TEST

5.1. Introduction : In this lesson the idea of how a series converges or diverges is

discussed.

5.2 Objectives : Objective of studying this lesson is to explain the concept of

convergence of an infinite series.
5.3. p-SERIES TEST
5.3.1. State and prove p—Series Test
- 1

Statement : Z n_p be an infinite series, then it converges if p > 1 and diverges if
n=1

p <1
Proof : Case I : When p > 1

Given series

n? 2P 3P 4P 5P
[ 1 1) ( 1 1 1 1)
=14 —+— |+ —F—F—+— [+ (1)

2P 3P 4P 5P P 7P
As3z2 = WSV s s
S 37 9P
5> 4 = 5P >4P S—SL
5P 4P
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6>4 = 6/ >4 = —<—

6P 4P
754 = 7P>4P = L<L
7P 4P

And so on use in (1)

1 [1 1) (1 11 1]
Z—SH —t— | =t —+— |+ ...
n? 2P 2P) \4P 4P 4P 4P

= 1+F+F .......
= 1+L+;+
= 2p—1 (2[7—1)2 ....... (2)
1
As series on R.H.S of (2) is a GP series with C.R = p1 <1

So it converges, thus by 15t comparison test, series on L.H.S also converges.

Case II : When p = 1

1 (1 1 I 1 1 1
=1+—+[—+—]+(—+—+—+—]+ ........... ..(3)
2 \3 4 5 6 7 8

3<4 1,1
~ 374
s<g 1.1
~ 573
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6 <8 1.1
~ 68

1 1
7<8 = 7>§ and so on

Use in (3), we get

1
i — = —F—F.......
Consider R
H s —l+l+l+ +l—£
ere, n S Py T > >
lim S, = lim = = oo
n—> 0 n—>w 2

Thus, series on R.H.S of (4) diverges, so by 2™ comparison test, series on L.H.S
also diverges.

Case III : When p < 1. Then, clearly 5 > n”

Take both side, we get

3 |~

|
2722
n=1"

o0

1
zln_p is divergent because series on R.H.S is divergent by case II.
n=
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Example 5.3.2. Test the convergence of the following series :

T 1+L+_+L+ .. Z n(n+1)
A T AT W) &~ G+ 2)(n+3)(n+4)
Soluti i 1+—+L+—+
olution : (i) 1 ST T
=1+Zun
n=1
1 1 1
Where u, = 3 = N 3
n(n+3) .n[l ) nz(l j
n n
Choose Vn = 5
n
1
n2 1+3j
lim 22— fim —— "
n—)oovn n—>oo L
2
n

1
Now Z"n = 2_2 is convergent by p-series test.
n

By comparison Test ZLtn also convergent.

Hence, 1 + Zun also convergent.

1
i) 2 n(nt]) =D,

(n+2)(n+3)(n+4)
u, = n(n+1) = n‘n[Hij
To(n+2)(n+3)(n+4) n3[1+i)(l+ij[l+zj
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1
Choose V,, = —
n

1+l
n
n(1+2j(1+3)[1+4)
lim 2% = Jim n n n
n—>m>vn n—>oo ‘l
n

! =1
OO

_)

1
Now, ZV,, = Z; is divergent by p—series test.

So, by comparing test Z”n also diverges.

5.4. D-ALMBERT’S RATIO TEST

Let Zun be an infinite series such that lim Un -1

n—»0 un+1
Then, series
(1) Zun is convergent if [ > 1
(ii) D u, is divergent. If / < 1
(ii1) Test fails if / =1
ul’l
Proof : As | =1 50 far e > 0, there exists m N, such that
n+
“n__gl< eVn=m
Uptl
u}’l
- e< <l+e Vnzm (1)
Up+l

Casel : When /> 1then 1 < |- <1
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From (1)

u
[—e<——, Vnzm

Uptl

Put n=m, m+1, m+2,... n—1

We get

u
- e< 2

U+l

Um+1

Un+2

- e<

/- e<um—+2

Un+3

Up—1

u

- e<

n

Multiplying these (n — m) inequalities, we get

(- &) (- ... (- &) < 2m_Umtl Ums2
Up+1 Um+2 Upmy3

(- g™ < im.
u}’l

u,(lI-9" " <u,

Upy

u, < ——
n (1_ e)n—m

Um

<
I- 9" (- o

Uy

0

2”n<z U, u Z 1

el 1= 1- 9" ) -, -10-9"
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Consider

> 1 1 1
z (- o" - 1- e * (- 6)2 + (I e)3 SRR is G.P series with c.r =

n=1

1 1
<1- > —or——<1
(as1<1-eorl I )

1
So this series Z (- o is convergent.

Hence, series on L.H.S of (2)

Z”n also convergent for / >1
Case I : When /< 1. Clearly / <[+ e <1
From (1)

Uy

Upt1

<l+e€ Vnzm

Putn=mm+1, m+ 2. n—1, we get

u
n_ <]+ e

Uptl

Uy

<l+ e
Upyo

u
— <+ e
Upt3

(n — m) inequalities.

u,_
=l gy e
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U  Umsl Umi2 Dol (14 o1+ O (It ©)...... (i €
Upel Upi2 Upa3 Up
U o (13 g

n

u, <u,(l+e"™™

(I+e" "

U

I+ "I+ o™

or u, >

o0 [e0] u
Z”n>z =

o1 I+ " .(I+e™

o0 [e0] 1
Z::1 (l+ 6)_ no1 (+ )"
Yo% e
Since u, > is a GP series with c.r = > 1
a1 I+ e) (+9
1

Since [+ e<]1 = >1

(I+e

It follows by comparison test, series on L.H.S also diverges

1
Case III : When / =1 (a) Let zun = Z;
1 1
(a) Let X Un = Z_z Here u, =~
n
v
un — n2 1
nal 1 n+l = m
(n+1)
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u 1 2
lim —2 = lim [1+—) =1
n—)ooun+1 n—> 0 n

Here, in (a) part series in convergent.

By p-series test while in (b) part series

in divergent.

=1

But in both cases M
n—> o0 un+1

Ratio test fails.

Example 5.4.1 : Test the convergence of the following :

1 2! 3! 4! n!
() 3+t ot — .
3 9 27 81 3"
o1 x x?
(i) =+ —+—+ .
3 36 243
Slt' 3 l+2+ﬂ+ﬂ
olution (i) St ot
n! (n+1)!

Let Uy :3_n = Upil = 3n+1

n!
37

u )
n_ — lim

lim

n oty o (14D

3l’l+1
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n' 3}’l+1
= lim =—.
n—w 3" (n+1)!

) n!3"3
= lim

n—>03"(n+1)n!

= lim —>i:0<1
n—>on+1 0

by ratio test, series is divergent.

n—1

X
(i) Let 4, =~

n

X
= Up1 =

3" (1 +1)?

xn—l

. u 3 n 2

lim — = lim 3 n

n—oU, | n—>o x"

3n+1 (n + 1)2

X2 3 m? 3
= lim 5 - —
n—w 3"y x" x

3 .
Case I : If —>1 or 3 > x, then Zun is convergent.
X
3 L
Case II : If - <l <1 or 3 < x, then Z”n is divergent.

3
Case III : If —=1 je x = 3, ratio test fails
x

Put x = 3 in (1)
3t

u

n
3 32
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D N I

3n
by p—series test, it is convergent.

5.5. CAUCHY ROOT TEST

NS

Statement An infinite series Zun be such that lim u,” =1

n—» o0
(i) then ZLtn is convergent, if / < 1

(ii) D u, is divergent, If / > 1
(iii) Test fails if / = 1.

1
Proof : As y,” — [, so for € > 0, there exist m such that

1 1
u," —-ll<e Vnzm = I[-e<u,"<Il+e Vnzm
Raise power ‘n’, we get

(-9"<u,<(+9", Vn=m (1)

Casel : When /< I, clearly /I <1+ e </

From (1), u, <(I+ ©", Vn>m
2 Uy <D (1+ 9" ()
n=1 n=1

2
But > (1+ " =(1+ 9+(1+ 9 +(I+ &) +.....
Is a GP series with c.r. = 1 + ¢ (<1).

Hence, from (2), series an L.H.S Zun also converges
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Case II : When / > 1, then
Clearly 1 </ - e< from (1)

(-9"<u,, Yn=m
e8] e8]
Y 1-9"< > u,
n=1 n=1

o]

or 21 u, > 3, (1= &)’ WE)

=1

As R.H.S of (3) is a GP series with c.r. / — e > 1.
So is divergent. Hence, series an L.H,S of (3) also diverges.

Case III : When /=1

1
(a) Consider zun = zn_z

1
Here, Un _n_z
1 1
; 1 \n 1
= W™ =2 ) = 1
n 5
(n=)"
1
P 1
u," = T
(n")*
1
. - . 1 1
lim ," = lim —— — — =1
n— oo n—o (n) n (1)

1
(b) Consider Y u, = -
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I | =

1

lim u,” = lim —lz%zl

n—> 0 n—»>ow
nl’l
Note that in (a) part series is convergent, by p-series test, while in (b) part series is
1

divergent. But lim u,” =1, which means root test fails i.e because for convergent and
n—> 0

1

divergent. series lim u,” =1.
n—» o0

Example 5.5.1. Test the following series :

(i) E:——_j_—- (ii) }:[1—%Jn2

nn
2
(n+1)"

2
n
n

(n+1y"

Solution : (i) Let » u, = Y

1 2

n
. - . n
lim u,” = lim [ ]
n— oo n—o| \n+1

N

= lim 7
n—» 0
1 j
'I{[ n
= lim !
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1 1 . 1"
:—:—<1 ° hm 1+_ =e
e 23 n—o n

= Zun is convergent.

(ii) Let Y u, = Z[l—ljn

n

1
L A
lim u,” = lim [1——)

n— 0 n— ™

-1
n -n
= lim [l—l) = lim [1+[—lj }
n—» o0 n n—> o n
=e_1=l<1
e

= Zun is convergent.

5.6. RAABE’S TEST
(u, )

An infinite series Zun be such that lim nL

n— 0

=1.

|
Up+1
Then,
1. series is divergent, if / <1

2. series is convergent, if / > 1
3. test fails for / =1

Up

Upil

(
Proof : It is given nL —lJ — [, means, for €¢>0, Im e N
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such that <g Vn>m

((u, )
nkunﬂ_lj_l

Uy

Up+1

l—e<n( —1J<l<e,Vn2m

c< (n(un _un+1)\\

Up+1

- <l<e Vnz=m

Multiply by u,,, to whole
(o) (= ©) < [ty 1, )] < (+ Dty Vnzm
(I=9u, <[nu, —nu, D] < (+Su, 1, Vn=m

Add —u to whole

n+l
(- Quyp —up <[nu, —nu, —u, DI< U+ Qu, .4 —u,,;, YVn=m

(- e-Du, 1 <[nu, —(n+Du, ] <+ e-Du, 1, Vn=m (1)

Case I When / < 1. Clearly, /[ <[+ € -1 <0 ..(2)

Consider from (1)
nu, —(n+Du, | <(+e-Du,,Vnzm

Put n=m, m+1,..... n—1
mu, —(m+Du, ; <(+e-Du,,
m+Duy, g —m+2u, » <(+e-Du,
(m+2)uyp —(m+3u, 3 <(+e-Nu,.3

mn-D-(m-D)=n-m

(n=NDu,_; —nuy <+ e-Nu,
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Add above (n — m) inequalities

mu,, —nu, <+ €-D)[u,, 1+t 2+.... +u,] ..(3)
We know S, = uy + uy +.......... + u,
—M1+M2+ ....... +Mm+ ....... +Mn
=u1+u2+ ....... +um+um+1 ....... +Mn
S=S, tu, . tu, 5t + u,
e N o TR S ST +u,=S,-5S,

Use in (3), we get
mu,, —nu, < (+e-1)(S, -S,,)

S, =S, U+ e-1)> mu,, —nu,

mu,, — nu
S, -S )>—=" L
Sn=Sn) I+ e-1
mu,, — nu
S 5§ 4—=m
nem I+ e-1
S, > k, where k=Sm+w
I+ e-1

= {S,} of partial sum is bounded below thus, series Zun is divergent.

Case Il : When /> 1. Then 1 <[- e <1 | { |
Consider, from (1) 1 I—e |
(I-e-Du, .y <[nu, —(n+Du, 1<+ e-Du,,, Von=zm

and proceed as case (1) ,we see that sequence {S,} of partial sum is bounded above,
then series is convergent.

Case III : When / = 1.

Consider
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a convergent Series

1
(b) 2; a divergent Series.

)

But in both the cases 1lim n( Un —lJ =1.
n+l

n— 0

Example 5.6.1. Test the convergence of the following series :

135..2n-1) 1
(2 246...2n) n

@ Z(n') ")

(2n)!
2.4.6....(2n)
) z1.3.5......(2n—1)
1 13 135
(4)_ 23t 7ag

22 2242 2242 62
(5) X =—xty xS+ 0 X e
3.4 3.4.5.6 3.4.5.6.7.8

1 ¥ 13 ¥ 135
(6) —x—4+—X—+—"X—+......
272 2475 246 7

13.5...2n-1) 1

Solution : (1) Let DUy ZZW'Z

L _L35..2n-D 1
" 246...2n) n

130 2n-)@2n+1) 1

u = .
= T 4 2n).2n+2) n+l
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lim n{ Un —1}
n—> 0 un+1
 13...@n-D) 1
— hrn n 24 ....... 2]’1 n _1

nse | T30 @n-D@2n+1) 1
| 24...2n).2n+2) n+1

. (1320 = 1) (24....20) 2n + D(n +1) 1}
nosw | (24...2n)n(13.....2n - 1)(2n +1)

= lim | Gt
n—ow | n(2n+1)
|2 vomrme2- 247 —n
= lim n
n—> 0 AQn+1)
. 3n+2
= lim
n—w| (2n+1)
Use L.H rule
=§>1
2
= Zun is convergent.

N>,
(2) Let Z”n ZZ gn))!x

(),
u, ——(2n)!x (1)

[+ D2 [m+1).n1
= Uy = = X
[2(n+1)]! (2n +2)!
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(n+ D)),

-X | we use ratio test

T 2n+2)2n+1)(2n)!
(n1)?x"
Uy (2n)!
T (n+D*()*
2rn+2)2n+1)(2n)!

" Qn )20+ 1) Quefl
j/Z«rf)/!(nJrl)2 WP x

:(2n+2)(2n+1):”2[“3[“3 4

+1)%. 2 X
(n+1)7.x n2[1+1j X

4
Case I : If T >1or4>x or x <4, then Z”n is convergent.
4 o
Case II : If T <1 or4 <xorx >4, then Zun is divergent.

4
Case III : If — <1 or x = 4. Then ratio test fails.

X
. (n)*
Put x = 4 in (1), u, =(2—n)!4n
We get Raabe’s test
(n)* 4
u, (2n)!
et [+ DT
[2(n+D]!
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_( N%4"  (2n+2)!
n)! [(n+1)nF4"!

_W(znu)(znﬂ)@fﬁ
omt (n+1)2M

_ 2rn+2)2n+1)
4(n+1)?
Up 4 (2n+2)(2n+1)_1
Uy 1 4(n+1)°

CAnt v 6n+2-4(nt+2n+1)  2n-2
4(n+1)* 4(n+1)?

N (a2 “’“(‘2‘3
”LunH_U:nU(iH)zzJ: 4n2(1+1)2

lim n( Un

n— 0

1\= T R s
J n—>w 4(1 1]2 2
+7
n

By Raabe’s Test is divergent.

Upil

1 ¥ 13x 135%
6) ——+— 22
2°3 245 2467
C135...2n—1) x*!
Let 2.t = 246...(2n) (2n+1) (1)
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135..2n-1) x*3  135..02n-1)Q2n+1) x*"*3

u =
= T 46..2n+2) 2n+3)  246....2n)(2n+2) (2n+3)
135,020 — 1) x>
u, 24.6....... 2n)(2n+1)

Upyl 1350, (2n—1)(2n + 1) x>"*3
24....... (2n)(2n+2)(2n+3)

135, Qn-Dx* 24..2n)2n+2)2n+3) (2n+2)(2n+3)

24.6.2n)2n+1) 135, 2n-1)Qn+D)x2" 2 Qn+1)@n+1)x2

(1)
2n(1+22n) 2n[1+ 23}1] )

= 1 =—asn—>wo
2n(1+)2n[ sz X
2 2n

1
Casel : If =3 > 1, then Zun is convergent.
x

1
Case II : If —5 < 1, then Z”n is divergent.
X

1

u
Case IIl : If —5 =1 or x =
X

. (n+2)(2n+3)
.  (2n+1)(2n+1)

1, Ratio test fails

lim n[ ]

n—o \U,iq

_l\: i | @1ED@n3)
)= L @n+1)(@2n+1)

o 4 ven+an+6—4an? —4n—1
= lim n
n—>m 2n+D)(2n+1)
o(1+2)
6n+5 \ /( /)[ *

e g -]
n
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6 3
=—==>1
4 2

By Raabe’s Test ZLtn is convergent.

5.7. EXAMINATION ORIENTED EXERCISE/ LESSON END
EXERCISE

Q.1. Test the following series :
}12
n 1) >
i) X~ (if) Zfl—;) n

(n+1) n?

Q.2. Test the convergence of the following

1 21 31 4 n

(i) -+ —+t—+—+......... +—+ ...
379 27 81 3"

11 x+_3+£+£+ xzn_l +

(i) TR TR TR Qn iy

Q.3. State and prove p-series test.

Q.4. State and prove ratio test
5.8. SUGGESTED READING

The students are advised to go through following references for details
5.9. REFERENCES

(1) Real analysis by by J.N. Kapur & H.C. Saxena, S.Chand & Co.

(2) Real analysis by J.N. Sharma & A.R.Vashishtha,Krishna Publication, New
Delhi.

(3) Real analysis by Richard R. Goldberg, Oxford & IBH Publication Co. Pvt.
Ltd. New Delhi.

(4) A text Book of Real Analysis by Sunil Gupta, Narinder Kumar, Malhotra
Brothers Pacca Danga, Jammu.

(5) Real analysis by Jagdish Parsad Mittal & Neeraj Doda, Sharma Publication,
Jallandhar.
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5.10. MODEL TEST PAPER

Q.1. Test the following series :

2

) X (i) Z[l—ﬂnz

(+1)
e L
(iii) PR I T o T
3 x5 x7 x2n—l
i X+—+—+—+ ... +
VTR T @n-1)

Q.2. State and prove Ratio test.
Q.3. State and prove p-series test.
Q.4. State and prove Raabes test.

Q.5. Test the conversion of the following series :

(n |) (x™) . 135...2n-1) 1
0 2= 2n)! () 246 2n) n

2.46....(2n)
i) 2735 2n—1)

skskskskskoskokok ok
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B.A. SEM-1V MATHEMATICS LESSON No. 6

ALTERNATE SERIES

6.1. Introduction : In this lesson the concept of alternate series are discussed.

6.2 Objectives : Objective of studying this lesson is to explain concept of
convergence of alternate & absolute series.

6.3. ALTERNATE SERIES

A series of the type

o0
Z(—l)”_lun = U —Uy Uy —Ug o, ,eachu, >0
n=1

Is called an alternative series.

1
Example 6.3.1. (i) 1-3 + 5-7 +............. (ii) 1—5+———+ ............

6.3.2. Lebnitz Test : An alternate series

0
> D", =g —uy +uz — g . is such that
n=1

(D) uy >uy >uz > ... SUy > Uyl > e i.e.{u,}1s decreasing.

(2) u, > 0 as n —> oo. Then Z(—l)"‘lun is convergent.

Proof : Let {S,} be sequence of partial sum of series Z(—l)"‘lun

Consider Szn = Up— Uy FUz Uyt Usy, (a)
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Also, S, .1 = (u —uy +uz —uy+..cc..... JU,) FUnug
Sone1 = Son + Uapel (1)

= Sop1 =80, >0 Uy, > 0

Sons1 2 S5, > 0
or {S,,} is increasing sequence.
From (o)

Sy, = g —(Uy + Uz —Ug + e Uy, ) <y
= Sy, <y
= {S,,} is bounded above.

Thus {S,,} is increasing and bounded above, so by Monotone convergence theorem,

1S,,} converges.

; lim =
Let S,, — S (say) i.e. m S,, =S

From (1)
lim Szn+1 = lim Szn + lim Urp+l = S+0 |: Iim u, = 0 by (2):|
n—>oo n—> oo n—> 0 n— 0

lim S2n+l=S = Sz,,H_]—)S
n—» 0

Hence S,,.1—>S, S5,.»—>S = §,—>S

i.e. Partial Sum {S } of Z(—l)”_lun also converges.

Z(—l)”_lun is convergence Series.

Example 6.3.3. Test the convergence of following :

11 .
(1) 1—%+%—%+ .............. D"
) L,
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11 N 11 N
3) log2 log3 log4 log5s

-1
4) 1—l+l—l+ ............. +( D
3 5 7 2n—1

(5) 24468t

. L 1 U B U
Solution : (1) —%4-?——4- ......... =1- 1 + T~ 1

22 (33 @*

(®) fim u, = lim —— =140

n— 0 n— o 1

(m)"
Since 2" condition of Lebnitz test fails, we can’t apply Lebnitz test to this series

L, 11 Nl
Q) _§+2—2—2—3+ ............ —2(_) 2}1—1

(a) Clearly u; >upy >z > oo

(b) lim u, = lim ! =0

n— oo n—oo 21
As above series satisfies both conditions of Lebnitz test so given series is convergent

1 1 1 1
- + - +
log2 log3 log4 log5

(©))

Hence (a) uy >uy > uz > ...

lim u, = lim ;—0
(b) n—o n—)oolog(n+1)

As above series satisfies both conditions of lebnitz test so given series is convergent.
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(4) Same as (i) Part.
5)2-4+6—8+....
u, =2 -4+6-8+ ... (2n)...o.....

Ul < Uy <UF <vorerrieiniieiiieins means 15! condition of Lebnitz test fails, so we
cant apply Lebnitz test to this series.

6.4. ABSOLUTELY CONVERGENT SERIES

Definition 6.4.1. An Alternate series

0

z (—1)"_114” =Up — Uy + Uz —Ugleeeennee..
n=1

is said to be absolutely convergent series if series ‘ 2(—1)n_1un

© | 0

— n_ =

=> 1| D"uy (= |y | converges.
n=

n=1

Example 6.4.2. Prove that every absolutely convergent series is convergent but not
conversely.

Solution : Let 2(—1)”_11,:” be an absolutely convergent series.

This means | Z(—l)"‘lun | is convergent.

o0 o0

n—1 _
or 2o |1 22CED T [ = 2 fuy [y [+ u | is convergent.
n=1 n=1
< 1
Now 2Dy =g~y oz — g |
n=1

S|M1|+|—1/l2‘+|1/l3|+ ........

o0
=D luy, |
n=1

73



o0
Since R.H.S z |u, | is convergent so in L.H.S

n=1

Thus series ‘Z(—l)n_lun is convergent.

Converse of above result need not to be true.

6.4.3. Example of a convergent series which is not absolutely convergent.

1
= Z; is divergent by p—sries test.

Remark : A series which converges but not absolutely is called conditional convergent
series.

6.5. EXAMINATION ORIENTED EXERCISE/ LESSON END
EXERCISE

Q. 1. Test the convergence of following :

1 1 1 1
e e D"
O RE %
1_1+L_L+L
(2) AR S
1 1 1 1

- + - +
3) log2 log3 log4 log5

1yl
@) 1—l+l—l+ ............. +( D
3 5 7 2n—1
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(5) 24468t
6.6. SUGGESTED READING

The students are advised to go through following references for details

6.7. REFERENCES
(1) Real analysis by by J.N. Kapur & H.C. Saxena, S.Chand & Co.

(2) Real analysis by J.N. Sharma & A.R.Vashishtha,Krishna Publication, New
Delhi.

(3) Real analysis by Richard R. Goldberg, Oxford & IBH Publication Co. Pvt. Ltd.
New Delhi.

(4) A text Book of Real Analysis by Sunil Gupta, Narinder Kumar, Malhotra Brothers
Pacca Danga, Jammu.

(5) Real analysis by Jagdish Parsad Mittal & Neeraj Doda, Sharma Publication,
Jallandhar.

6.8. MODEL TEST PAPER
Q.1. Prove that every absolutely convergent series is convergent but not conversely.
Q.2. State and prove Lebenitz test.

Q.3. Test the convergence of following :

N1 1 N 1 1 . ™! .
| - — =t it
) ZJE 3J§ 4JZ .
- 1 1 1 1
(i1) —5+2—2—2—3+2—4 ..............
1 1 1 1

(iii) log2 log3 log4 log5

Q.4. Give an example of a convergent series which is not absolutely convergent.

skskskskskoskoskok ok
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B.A. SEM-1V MATHEMATICS LESSON No. 7

CONTINUOUS FUNCTIONS

7.1. Introduction : In this lesson the concept of continuity of functions are discussed.

The concept is explained in a simpler way.

7.2. Objectives : Objective of studying this lesson is to give the idea of continuity of
functions both in algebraic & graphical forms.

7.3. INTRODUCTION

First we shall introduce the concept of limit of a function whose domain is an
interval and whose range is contained in R.

7.3.1. Definition of Limit : A number / is said to be the limit of f(x) at x = a
iff for any arbitrarily chosen positive number , however small but not zero, there exists
a corresponding number greater than zero such that

| f)-1l]<e
for all values of x for which 0 <|x —a | <.
Meaning of | x —a | <.

Since | x — a | means the absolute value of x — a without regard to sign, the inequality
| x — a | <9, means that the difference between x and a taken positively, is less than 9.
Thus

(i) if x > a, then x —a <.
(i) if x < a, then a — x < 3.
In other words, if x > a, then x < a + 6 and if x < a, then x > a — d.

Hence | x — a | < 8 means that x can be assigned any value between a — d and a
+ 4.

Right hand and left hand limits.

If x approaches a from right, that is, from values of x greater than a, the limit of
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f as defined above is called the right hand limit on f (x) and is written as :

lim f(x) or f(a+0) or lim+ f(x)

x—a+0 xX—a

Formally we may define Right hand limit as under :

“A function f (x) is said totend to a limit / through right hand if for any arbitrarily
chosen positive number ¢ however small, but not zero, there exists a corresponding & >
0 such that

| f(x)-1]< e
for all values of x such that a < x < g + &”.

The working rule for finding the right hand limit is : Put x = a + 4 in f (x) and make
h approach zero.

Similarly if x approaches a from the left, that is, from values of x smaller than a,
the limit of fin that case is called the Left hand limit and is written as

lim Of(x) or f(a—0) or lim+ f(x)

xX—>a— xX—>a

formally we may define Left hand limit as under :

A function f (x) is said to tend to limit / through left hand iff for any arbitrarily
chosen positive number however small but not zero, there exists a corresponding number
0> 0 such that a — 6 <x < a.

Remark 7.3.2. The limit of the function f (x) is said to exist if both right hand and
left hand limits exist and are equal i.e.

lim f(x)= lm f(x)=1
x—>a—-0 x—>a+0

The common value is called the Limit of the function and is written as :

lim f(x)=1

x—>a+0

(2) In case of Left hand limit is not equal to the right hand limit, the limit of the
function does not exist. Also the limit of the function does not exist if either one both of
these limits donot exist.

EXAMPLE 7.3.3. (1) Let a function f be defined as
f(x)=-1 when x <0
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=0 whenx=0
=1 when x>0

Then Ilim f(x)=-1and Ilim f(x)=1

x—>0-0 x—0+0

Here M /()% lim [ ()

x—>0-0

lim f(x) does not exist.
x—0

(2) Let a function f be defined as
1-2x when x <0
fx)=17 0 whenx=0

1+3x whenx >0

Then  lim f(x)= lim (1-2x)=1

x—>0-0 x—>0-0

lim f(x)= hrn (1+3x)=1
—>0+0

x—>0+0
Iim f(x)=1
Here x—)Of( ) .

7.3.4. Algebra of Limit : Let f and g be two functions with a common domain D
and whose ranges are in R.

The sum of the function f and g is the function f + g defined on D by setting

f+g (x)=f(x) + g (x) for all xeD.

Also, the product of the functions fand g is the function fg define on D by setting

(fg) x) = f(x) . g (x), for all xeD.

Again, if ¢ be any real number, the scalar product off by c¢ is the function c¢f defined
by setting (cf) (x) = ¢f (x), for all x eD.

Further, if g (x) # 0 whenever x eD,, then the reciprocal of g is the function —

D

(1) 1
defined on D, be setting Lg J = , for all xeD,.
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Finally, if g (x) # 0 whenever xeD,, < D, then the quotientis the function

()
defined on D, by setting LgJ (x) = %, for all x eD.

We shall now study the relation between the limits of two functions and the limits
of their sum, product etc.

Theorem 7.3.5. The limit of a sum is equal to the sum of the limits.

Proof. Let us assume, and lim f(x)=/and lim ¢(x)=m.
XxX—>a XxX—>a

Then we have to prove that lim [f (x) + ()] =1+ m.

X—> 0

We have only to show that for any preassigned positive number e, a number can
be determined such that

| f(X)+o(x)-I-m|< €
whenever x lies in the interval [a — 8, a + 8].

Now by hypothesis lim f (x) = [ so that

|f(x)—l|<§,whenever0<|x—a|<81 (1)

€
Similarly, | @ (x) —m |<5 whenever 0 <|x—a [< 06, .(2)

Choosing 6 to be smaller of the number §,and 3,, it follows from (1) and (2) that
S +o@) —l-m|=]f(xX)-I+¢(x)-m|
SIS =1[+][e(x)—m]|

S
<—+—=¢€
2
When 0<|x—al|<d

Hence xli_r)na[f X)+ox)]=1+m
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the same way we can prove that xli_l)na[f () + Q)] =1-m .

Theorem 7.3.6. The limit of a product is equal to the product of the limits.
Proof : Using the notation of theorem I, we have to prove in this case that

| £ (x).9(x)—Im| < € whenever 0< |x—a|<85.
Now [/ (x).o(x)=Im|=]|f(x).0(x)=Ilo(x)+Ip(x)—Im|
S1f(x).0(x)—lo(x) [+ [ o (x)—Im]|
=l [ f(x) =1+ ]l]]@(x)—Im]|

By hypothesis lim f(x)=/and lim @ (x) =m inso ¢ that is surely bounded in
XxX—>a XxX—>a
the neighborhood of x = a.
Hence |@(x)| < M for all value of x such that 0 < | x —a | <.

Then [f(x) @ () —Im [<M |/ ) L[+ ][] @) —m]

Since lim f(x)=1 and ¢ (x) — m, coressponding to any e > 0, we can find a
xX—>a

positive number < such that | f(x)—/]|< ﬁ and |@(x)—m| < i| whenever

2|1
O<|x—al|<?d.
Hence f(x)¢o(x)—Iim.

Theorem 7.3.7. The limit of quotient is equal to the quotient of the limits provided
the limit of the denominator is not zero.

Proof : Let lim f(x)=/and lim o(x)=m =0

Now M_Lsf(x)_f(x) +‘f(x)_i‘
o(x) m ¢ (x) m m  m
_ /)]

- e+ ()1}
o] m
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)] |
=Ly — | f -1
DT I T ()

By hypothesis lim f(x) =7 and lim ¢ (x) =m. Hence the functions f'and ¢ are
xX—>a xX—>a

surely bounded in the neighborhood of the point x = a. Let M be the upper bounded of
| ] and N be the lower bounded of | ¢ | so that | f(x) |[< M and | ¢ (x) | > N.

We may then write (1) as

PACING

e Mg+ ——| f (-1 Q)

~Nim| | m |

Since lim f(x)=17and lim ¢(x) = m, corresponding, to any e > 0, we can find
xX—>a XxX—>a

number 6;and 8, such that
€
| f()—1]<|m]| [5] whenever 0 <|x—a|<§;

€

5 whenever 0 <|x—a <3,

N
xX)-m|<—|m]|.
and | @ (x) | M| |

Choosing & to be smaller than §; and 5,, we see from (2) that

f('() —_—t — =€ “yhene‘le[‘ “ X—da 6

Hence lim —, provided m=0..
x—>a ()C) m

7.4. SOME IMPORTANT LIMITS

The following limits should be committed to memory by the students.

sin ©

(A) lim =1, when ¢ is measured in radians.
0

-0

<=

=e

X
(B) lim [1+l) =e and lim (1+ y)

X—>00 X y—0
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EXAMPLE 7.4.1. The function f defined on [0, 1] by

=1, xd0,1]
X

is continuous on ]0, 1].
c
Solution. Let ¢ €]0, 1] be arbitrary. Take ) = 5 >0 such that

c c 3¢
|x—c|<d == = —<x<—
2 2 2

2 1 2
This gives (1)—2 <—<—
3c X ¢

Let € > 0 be given.

1| |x-c|

Then |f(x)—f(c)|=‘%—z‘_

CcX
< Zlx-c]
— | X—C
c2

2
. c
<61f|x—c|<76

2
If we choose & = min {%, e}

Then, we have | f(x)— f(c)| < € whenever | x—c |<3.

Hence f'is continuous at c. Since ¢ [0, 1] is arbitrary, it follows that fis continuous
on [0, 1].
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7.5. DISCONTINUITY CRITERION

Let f'be a real valued function defined on Ic R and ¢ el. Then fis discontinuous

at ¢ if and only if there exists a sequence <X, > in [ with, lim x, = csuch that
X—>C

lim f(x,)# f(c).

7.5.1. Kinds of Discontinuities : (1) A function f is said to have a removable

discontinuity at a point ¢ iff lim f(x) exists but is not equal to f (a), i.e., iff
xX—>a

fla+0)=f(a-0)=f(a)

In such a case the function may be made continuous by defining it in such a way
that

S (@)= lim f(x)

(2) If f (a + 0) and f (a —0) both exist and not equal, then we say that it has a of
the first kind at a.The point a is said to be a point of discontinuity from the left or right

as f(a-0)=f(a)=f(@a+0)or f(a—0)=f(a)= f(a+0).
(3) A function f'is said to have a discontinuity of second kind at a iff none of f (a

+ 0) and f (a — 0) exists.

A point a is said to be a discontinuity of the second kind from the left or right
according as f (a + 0) and f (a — 0) exists.

!
xsin—, x#0
Example7.5.2. Test the continuity of the function f (x) = X

0, x=0

1
Solution. H 0+ 0)= lim(0+ A)sin
u ere f ( ) h—>0( ) 0+nh

!
h s = 0 x a finite quantity

=0 [+ sin [%} is bounded lying between — 1 and 1]
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Similarly £ (0 — 0) = lim (0 — A)sin !
h—0 0

= lim (0 — &) sin = lim hsinl =0, as before.
h—0 -h h>0

Also 1 (0) = 0.

1
Since (0 + 0) = £ (0 — 0) = £ (0), the function x sin T is continuous at x = 0.

Example7.5.3. Show that the function defined as

0, for x<0

l—x, for0<x<l
2 2
¢ (x) =

3—x, forl£x<1
2 2

1, for x=1

has three points of discontinuity which you are required to find.
. . - 1
Solution. We test the function for continuity at x = 0, ) and 1.

1 1
For x = 0, we have ¢ (0) =0, ¢(0+0)= lim {——(O+h)}=—
h—0[ 2 2

Since ¢ (0) =@ (0+0), the function is discontinuous at x = 0.

For x = E’ we have
)=el5-0)= jm | 5-(5-7)
“l=0|=-0]|=1 ——|==h||=0
(P[z ?2 hinO[Z 2
(p[l+0): lim g—(l+hj =1
2 h—>0] 2 2



1 1 1 1
Since (P[E - O) # (P(Ej * (P[E + 0] > the function is discontinuous at X = (P(I)E-

Finally, we consider x = 1. We have

. 3 1
o()=1, (p(l_o):hlinob_(l_h)}:f

Since @ (1-0) #¢ (1) so the function is discontinuous at x = 1.

1
Hence the function is discontinuous at X =0, 5 ,and 1.

7.6. EXAMINATION ORIENTED EXERCISE/ LESSON END
EXERCISE

Q.1. Let a function /' be defined as

1-2xwhenx <0
F(x)=9 0 whenx=0

1+3x whenx >0

Is F continuous function.
Q.2. Prove that sum of two continuous functions is continuous.
Q.3. Prove that product of two continuous functions is continuous.
7.7. SUGGESTED READING
The students are advised to go through following references for details.
7.8. REFERENCES
(1) Real analysis by by J.N. Kapur & H.C. Saxena, S.Chand & Co.

(2) Real analysis by J.N. Sharma & A.R.Vashishtha,Krishna Publication, New
Delhi.

(3) Real analysis by Richard R. Goldberg, Oxford & IBH Publication Co. Pvt. Ltd.
New Delhi.

(4) A text Book of Real Analysis by Sunil Gupta, Narinder Kumar, Malhotra Brothers
Pacca Danga, Jammu.
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(5) Real analysis by Jagdish Parsad Mittal & Neeraj Doda, Sharma Publication,
Jallandhar.

7.9. MODEL TEST PAPER

Q.1. Prove that every continuous function is bounded.
Q.2. Give an example to show that a bounded function may not be continuous.
Q.3. Prove that sum of two continuous functions is continuous.

Q.4. Prove that quotient of two continuous functions is continuous.

0 for x <0

l—xforOSx<l
2 2

Q.5. Show that the function defined as ¢ (x) =

é—xforle<1
2 2

1 forx=1

has three points of discontinuity.

skskskskskoskokok ok
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B.A. SEM-1V MATHEMATICS LESSON No. 8

THEOREMS ON CONTINUITY

8.1. Introduction : In this lesson the properties of continuity of functions are discussed
in the form of theorems.

8.2 Objectives : Objective of studying this lesson is to explain continuity in different
approach in the form of results.

8.3. THEOREMS ON CONTINUITY

Theorem 8.3.1. The necessary and sufficient condition for a function f defined on
I R to be continuous at a el is that for each sequence <a,> which converges a, we have

lim f (a,) = f (a).

n— o

Proof : Let f be continuous at a el and let <a,> be a sequence such that

lim a, =a
n—®

Since f is continuous at a, for given € > 0, we can find 8 > 0 such that
[x—al|<d = |f(x)-f(a)]|<e (D)

Again since lim a, = a, there exists a positive integer m such that
n— 0

n>m = |a,—a|<?} .(2)

Setting x = a, in(1), we get

la, —al<d = |[[f(a,)-f(a)|<e
From (2) and (3), we get

n>m = | fa)-f(a)|<e
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Hence lim f(a,)= f(a)

n—> 0

Conversely, suppose for every sequence <a,> converging to a, we have
lim f(a,)=f(a)
n—» 0

Then we shall show that f'is continuous at a. If possible, let f'be not continuous at
a. Then there exists 8 > 0 such that for every & > 0 there is an e such that

|[x—al|<dbut]| f(x)- f(a)| =€

1
If we take 0 = —, we see that for each positive integer n, there exists {a,} such that
n

lay—a| <~ but| f(a,) - f(a)|>e
n

Then lim a, =a but lim f(a,)# f(a)
n— 0 n—

But this is a contradiction.
Hence function must be continuous at x = a.

8.3.2.Definition (Bounded). If the range of a function fis a bounded set, that is if
both upper and lower bounds of the function exists and are finite, then the function is said
to be bounded.

Equivalently, if there exists a number M > 0 such that | f (x) | < M for all x, then
fis said to be a bounded function.

Theorem 8.3.3. If fis continuous in the closed interval [a, b], then
(1) fis bounded in [a, b]
(2) f attains its supremum and infimum at least once in [a, b].

Proof : (1) Since f'is continuous in [a, b] so, for a given e > 0, we can subdivide
the interval into a finite number »n of sub—intervals such that

| /) —f(x)|< € (D)

for any two points x;, x, in the same sub-interval. Let x be any point in the first
sub interval [a, a;]. Then by (1) we have
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| f(@)=f(x)l<e

that is, f (x) lies in the interval f (a) — e and f (@) + <. In the same way, all the
values f (x) in the first two sub—intervals will lie between f (@) — 2 e and f (a) + 2 €,
and so on.Hence all the values of f (x) in the interval [a, b] will lie between f (a) — n e
and f (a) + ne. Thus fis bounded in [a, b].

Note 8.3.4. The converse of the above result is not true, i.e. a bounded function in
[a, b] need not be continuous in [a, b]. For example, the function

1
sinf —| for x#0
S ()= g
0 forx=0

is bounded in [0, 1] but not continuous in [0, 1], since it is discontinuous at x = 0

Proof (ii) : Let M be m be the supremum and infimum of f'in [a, b] respectively.
We shall show that fattains its supremum M at least once in this interval, i.e. there exists
a point x in [a, b] such that f (x) = M. Suppose it does not, then M = f (x) or M — f
(x) = 0 for any x in [a, b].

Let us define a function g on [a, b] by setting

1
g (x) = M——f(x) for all x e[a, b].

Since fis continuous on [a, b], therefore, g is also continuous on [a, b]. As every
continuous function defined on a closed interval is bounded, therefore, there exists a
positive real number & such that g(x) < k for all x e[a, b]. [It means k is an upper bound
of g) i.e., g (x) for all xe[a, b].

1 1
This means that f(x) < M — T for all x [a, b], so that M — T is an upper bound

0 f
f (x). This contradict the fact that M is the supremum of £, and consequently there must
exists some x in [a, b] such that M — f (x) = 0.

Hence f (x) = M for atleast one value of x in [a, b]. Similarly it can be proved that
f attains its infimum at least once in [a, b].

8.4. UNIFORM CONTINUITY

Recall the definition of continuity where f depends not only on e but also on the
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point catwhich the continuity is defined. Now e depends on the point ¢ means that the
change in the values of the function near some point may be different from other points.

Definition 8.4.1. A function f defined on an interval I R is said to be uniformly
continuous on / if for each e > 0 there exists a 6 = 8 (&) > 0 such that | f (x) — f (v)
| < e, whenever | x —y | <d and x, yeL

Examples 8.4.2. Consider the function f (x) = x%, xe[-1, 1].

Solution. Let x, y e[-1, 1] be any two points.

Then | f(x)—f () |=|x* = y* |=|x—y|[x+y[<2|x—y]

(- x,ye[-L,1] = [|x|<land|y|L])

= |f(x)_f(Y)|<€if|x—y|<§

€
Thus, for any e > 0 there exists 0 = 3 >0 such that

| f(x)—f (») | < e, whenever | x — y | <3&.

Hence f is uniformly continuous on [-1, 1].

Example 8.4.3. Consider the function f (x) =sinx, x €[0, + o].

Solution. Let x, y €[0, + «] be any two points. Then

| f()=f ()| =]sinx—siny|

- +
= 2sinx ycosu‘
2
= sinx_y cosx+y
2 2
. —-)
<2 |sin > ‘ (¢ JcosB| <)
<[x-y| (o |sinx|[<]0])

Therefore, for any e > 0, there exists a & > 0 such that
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[f(x) =f ()| < e, whenever [x —y [ <8 (= €)

Hence, fis uniformly continuous on [0, + o ].
8.5. NON-UNIFORM CONTINUITY CRITERION

A function f'defined on an interval [ R is not uniformly continuous on / if and only
if there exists an e > 0 such that for all 6 > 0 there are points x, y (depending on J)

inlsuchthat |[x —y|<dand |f(x) —f(y) =€

1
Example 8.5.1. Let /' be a function defined on ]0, 1] by f (x) = < Then

(a) fis continuous on [0, 1].
(b) fis not uniformly continuous on [0, 1].

Solution. Let 8 > 0 be any real number. Then by Archimedean Property, there exista

1
positive integer m such that — < 9.
m

1 1
Put x=— and ¥y =——. Then x, y, €[0, 1] such that

m m+1
1 1 1 1
lx—y|=|—- = <—<9d
m m+l m(m+1) m
1 1
and [ f)-FW = P =1>¢€ forany e < 1.

Therefore, fis not uniformly continuous.

Theorem 8.5.2. A uniformly continuous function f defined on an interval Ic R is
continuous on L

Proof. Let /' be uniformly continuous on 1. Then, for each e > 0, there exists 6 >
0 such that for x, yel.

W[ fx) —f@) < e, whenever | x —y | < 8.

Let ¢ el be any point. Since I is an interval, every sequence in I converging to c is
either monotone increasing or monotone decreasing. Let <x,> be any monotone sequence

lim x, =c.
n—» 0

in I such that
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Then, for each & > 0, there exists a positive interger m such that
|x,—c|<9d, Vn=m
= [f()-fl<e Vnzm
lim f(x,)=f(c
L lim S ()= /()
= fis continuous at c.

Since c el is any point, it follows that f is continuous on L.

Remark 8.5.3. A continuous function is not necessarily uniformly continuous. Indeed
the continuous function f defined on R by f(x) = x? is not uniformly continuous since for

1
any O > 0 there exists (by Archimedian Property) a positive integer m such that P <3d.

Take x =mand y=m+—..
m
1
Then x, y eR such that | x—y[=—<3 and
m

2
1
(e k]
m

Theorem 8.5.4. A continuous function f on a bounded closed interval [a, b] is
uniformly continuous.

1
=—2+2>2=€
m .

S =)=

Proof : Suppose f'is not uniformly continuous on [a, b]. Then there exists an ¢,

1
> 0 such that b for all 5[: ;j >0,n €N There are points x,, y, e[a, b] such that

1
(M) [x, =y, | < and [ f(x,) -f0,) [ > €

We thus get sequence <x,> and <y, > in [a, b] satisfying (1). Now <x, > is a bounded

lim x, =ux.
sequence, so <x,> has a convergent subsequence say <X, >. Let . ~ .Then

x ela, b], since [a, b] is closed. Let <Vp > be a subsequence of <y >. Then (1) gives.
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@ 15 = g 1< i and | £ (5,)~ ()| 2 &

note that [y, —x|<|y, —x, |=]x, —x|

1 .
<—+|x, —x|—>0,as k- o ¢ lm x, =1)
ny k k— o
= limy, =x

Now, since f'is continuous at x and klim Xy, =X, lim f (xnk) = f(x)
— 0 k— o

then, for each & > 0, there exists a positive integer m such that
@) S )-f()[<e Vnzm
Therefore | /' (v, )= S () =1 f ()= (x, )+ [ (x,) = [ ()]

=1/ )= ()= (f ()= [ (x, )|

2| f )= S Gy ) = (f ()= f () |

>ep—€ Vnxm (by (2) and (3))

= <f (¥, )> does not converges to f (x). However klirn Vp, =X. This
—> 0

contradicts the facts that fis continuous at x e [a, b]. Hence f must be uniformly continuous.

8.6. EXAMINATION ORIENTED EXERCISE/ LESSON END
EXERCISE

1. Do the following limits exist ? If they exist, find their values:

Xt - y2 . ,
@ xlina xX—a (i) )}111)11 2x—1 (iii) xIE)n01—el/x
. b 1
- lim 7 . ox"=3x+2 o 1o~
(iv) x>0 L (v) im ———  vi) lim|—
l_exfa x—2 x_2 x—>0\Xx
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1
;1) lim sin [—]
(VH) x—>0 X

1
2. If f(x) = e; , then show that at x = 0, the right hand limits zero while the left

hand limit is +o0o, and thus there is no limit of the function at x = 0.

3. Discuss the continuity, of the following function.

x2—1

,x#1
S(x)=9 x-1 at x = 1.

2, x=1

4. Discuss the continuity of f (x) at x = a where f (x) is define as follows :

(x—a)sin ,X#a
f(x) = xX—a
0, xX=a
2
—4
al 5 x#2
5. Examine S =1 %= for continuity at x = 2.

4, x=2

6. Show that | x | is continuous at x = 0 and draw its graph.

7. Investigate the continuity of the function :

2

x——a, x<2
a
f(x)= 0O, x=aatx=a
a2
a——,x<a
X
1
—, x#2
8. Examine f (x)= 2 continuity at x = 2.
0, x=2
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9. Examine whether or not the function

sin 2x

fx)=1 2
I, x=0

,x#0

1s continuous at x = 0

10. If f'be a function defined on [0, 1] by

x, if xisirrational
S ()= then show that 1 is continuous at x = 0.

0, if xisrational

11. If fis a function defined on R as

S )=

0, ifx=0

then show that ! is discontinuous it x = 0.

12. Show that the following function is discontinuous at x = 0.

1,1fx;tO
S(x)= —
l+e X

0, ifx=0

13. Define the continuity of a function at a point.Examine for continuity the function

xsinl, if x#0
S(x)= x
0, ifx=0

atx =20

14. Discuss the continuity of the function
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1
— =X, when0<x<l
2 2

1 1 1
x)=< — whenx=—atx=—
S (x) > > >

3—x when%<x<1

2

15. A function g is defined by

1—-cosx
3 ,x#=0

f()=y x

k,x=0

Find the value of k if g is continuous at x = 0.
16. A function f (x) is defined as follows :

3+ 2x, for—%ﬁx<0
3
f(x)=43-2x, forOSx<§

-3-2x forng
2

3

Show that f (x) is continuous at x = 0 and is discontinuous at x >

17. A function f (x) is defined in the interval [0, 3] in the following way :

xz, when 0 < x <1

f(x)=4 x, whenl<x<?2

2
x—when2£x<3

Show that f (x) is continuous at x = 2 and x = 1.
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18. Prove that a continuous function on [a, b] is always bounded, but a converse is
not true.

ANSWERS
1. (i) 2a (i) No, f(1-=0)0, (1 +0) = o
(iii) No, f(0 + 0) =0, and f (a — 0) = 1
(iv) No, f(a+0)=0,and f(a—-0)=1

v) 1 (vi) No (vii) No
3. Continuous 4. Continuous 5. Continuous 7. Continuous 8. Continuous
) ) . . 1
9. Continuous 10. No 13. Continuous 14. Discontinuous 15. k = 5

8.7. SUGGESTED READING

The students are advised to go through following references for details

8.8. REFERENCES
(1) Real analysis by by J.N. Kapur & H.C. Saxena, S.Chand & Co.

(2) Real analysis by J.N. Sharma & A.R.Vashishtha,Krishna Publication, New
Delhi.

(3) Real analysis by Richard R. Goldberg, Oxford & IBH Publication Co. Pvt.
Ltd. New Delhi.

(4) A text Book of Real Analysis by Sunil Gupta, Narinder Kumar, Malhotra
Brothers Pacca Danga, Jammu.

(5) Real analysis by Jagdish Parsad Mittal & Neeraj Doda, Sharma Publication,
Jallandhar.

8.9. MODEL TEST PAPER
Q.1. Do the following limits exist ? If they exist, find their values:

Q.2. Prove that every continuous function attains supremum & infimum
Q.3. A function g is defined by

1—cosx

f=1

k,x=0

Find the value of k if g is continuous at x = 0.
Q.4. A function f (x) is defined as follows :
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l—x, When0<x<l
2 2

1 1
x) = 0 whenx = —atx = —
S (x) > 5

3—?ax Whenl<x<1
2 2

1

Show that f (x) is continuous at X = 5

Q.5. A function f (x) is defined as follows :
3
3+ 2x, for _ESX<O

f(x)=43-2x, forOSx<§

-3-2x forxzi
2

3
Show that f (x) is continuous at x = 0 and is discontinuous at x = 5

Q.6. A function f (x) is defined in the interval [0, 3] in the following way :

xz, when 0 < x <1

f(x)=9 x, whenl<x<?2

2
xTwhen2Sx<3

Show that f(x) is continuous at x = 2 and x = 1.

Q.7. Prove that a continuous function on [a, b] is always bounded, but a converse
is not true.

skskskskskoskokok ok
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B.A. SEM-1V MATHEMATICS LESSON No. 9

DIFFERENTIABLE FUNCTIONS

9.1. Introduction : In this lesson the concept of differentiation of functions is
discussed.

9.2. Objectives : Objective of studying this lesson is to explain differentiations of the
functions & the difference between continuity & differentiation along with some of its
properties.

9.3. DIFFERENTIABILITY AND MEAN VALUE THEOREMS
DERIVATIVES OF A FUNCTION

Definition 9.3.1. If f/ (x) is a finite and single valued function of x, then

ACENAC)

xX—>a X—a

if it exists, is called the derivative of f (x) at x = a and is denoted by f’(a).

. fla+h)—f(a)

i if lim
Equivalently, if P i

exists, then it is denoted by f’(a) and is called the derivative of f (x) at x = a.
Right hand and left hand derivatives

p L= S (@)

x—>at X—a

means the same as

o L@t -/ @

h—>0 h
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if it exists is called the Right hand derivative at x = g, and is denoted by f'(a + 0)

or Rf'(a).
L S-S @

Similarly e x-a
a

i f@th -7 @

means the same as
h—>0-0 h

If it exists is called the Left hand derivative at x = a, and is denoted by f'(a — 0)
on Lf'(a).

If Rf'(a) and Lf'(a) both exist and are equal, then f'(x) is derivable at x = a and the
common value is nothing but f’(a).

Remarks 9.3.2. (i) If Rf (a) and Lf (a) both exists and are different, then the
derivative will not exist and the function will not be derivable at x = a.

(i1) If £ (x) possesses a derivative at every point of the interval (a, b), then it is said
to a derivable in the interval (a, b).

(iii) If f (x) is derivable on (a, b) and also at points a and b, then we say that f (x)
is derivable in [a, b].

(iv) The process of finding the derivative of a function is called the Differentiability.

(v) Geometrically, the derivative of the function at a point represents the slope of the
tangent at that point.

Example 9.3.3. Prove that f (x) = x for all x R is derivable in R, the set of real
numbers.

Solution. If @ is any point in R, then

flath=f@ o ath=a b o0
h h—0  h h—>0h h—0

f(a)= lim

h—0

Thus /' (a) = 1. Since a is any point of R, this means that /' (x) = 1 for all xeR.
Hence f (x) is derivable for all x eR.

Example 9.3.4. If n is any fixed positive integer and let f'be the function defined on
R by f (x) = x" for all xeR, then fis derivable in R.

Solution. If a is any point of R, then

im fla+h)— f(a) ~ lim (a+h)'—a"
-0 h h—0 h

f(a)=1
h
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a4 "qd" e+ "ed R W —a
= lim
h—0 h

o ("ed" ey b+ BT
= lim
h—0 h

1

= lim (na" ™'+ "¢ya" 2 h+ .+ BT

h—0

_ nan—l

Thus £ (a) = na"~! for any a eR
Hence f'(x) exists for all a eR

Example 9.3.5. Let f (x) = | x |. Then show that f (x) is not derivable at x = 0.

xwhenx >0

Solution. By definition | x | =
—xwhenx <0

Here f(0) = 0
RfF(0) =/ (0 +0)

lim JO-fO) _ lim x| _ lim X =1
x—0+0 x—0 x—=0+0 X x—>0+0 X
Then Lf (0) = f (0 — 0)
_ lim J)-f0) _ lim [x]_ lim — =1
x—0-0 x=0 x—>0-0 X x—>0-0 X

Then Lf (0) = Rf (0)
- fis not derivable at x = 0.

Example 9.3.6. Show that a function f (x) defined as

x when0<x<1
f(x)=
2—xwhenx >1
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1s not differentiable at x = 1

Solution. Here f (1)=1

. (1=-h)-1 . —h
Now Lf (1) = Iim —————=1lim — =1

h—>0 —h hs0—h
. 2=-(A+h)-1 .=

- lm ————= lim —=-1
Rf-(D) hino h hl—r>n0h

Then L (1) # Rf(1)
The function is not differentiable at x = 1.

Theorem 9.3.7. If a function is derivable at a point, then it is continuous at that
point.

Or
Differentiability = Continuity.
Proof. Let /': [a, b)] — R be a differentiable function. Then for all c €[a, b].

fr(c): lim f(C-‘rh)—f(C)
h—0 h

exists and equal /' (c). We shall show that f (x) is continuous at x = ¢, For this
consider

fleth-1@©
h

flerh)—=f(o)=

lim [f(c+h)— f(c)]= lim f(c+h)_f(c)xh

h—0 h—0 h

= lim LEED=T O iy g
h—0 h h—0

= f'(€)x0=0

Thus lim[f(c+h)— f(c)]=0 = lim f(c+h)= f(c)
h—0 h—0

This prove that f (x) is continuous at x = ¢ for all c €[a, b].
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Remark 9.3.8. The converse of the above theorem thus not hold, i.e. a function
is continuous at a point but may fail to be derivable at that point.

In other words, continuity is a necessary condition for derivability but not sufficient
as can be seen from the example given below.

9.4.

L.

6

EXAMINATION ORIENTED EXERCISE/ LESSON END
EXERCISE

If ¢ is any fixed number and f be the function defined on R by
f (x) = c for all x eR, then show that f (x) is derivable for all x eR.

1
xsin—, if x#0

. Show that the function f(x) = X
0,if x=0
1s continuous at x = 0, but is not differentiable at x = 0.
. Show that the function
(x —a)sin ,if x#a
)= x-a
0,if x=a

1s continuous at x = a, but is not differentiable at x = a.

. Show that the function
2 . 1 .
x“sin—, if x#0
f(x)= x
0,if x=0

1s differentiable as well as continuous at x = 0.

. Show that the function

2+x,if x>0
f(x)= ~ ; —
0.if x<0 1s not derivable at x = 0.

. Show that the function f'is defined on R as under :
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I, if x<0
S(x)= . is not differentiable at x = 0.
0,if x<0

7. Prove that every differentiable function is continuous. Is the converse true ?

8. Show that the function

X

TS x#0
Jx)=qlte is continous at x = 0 but is not derivable at x = 0.

0, x=0
9. Show that the function f(x) = | x — 4 | is continuous but not derivable

at x = 4.

10. Examine the derivability of the function

—x%if x<0

5x—4if 0<x<1
f(x)=
4x* _3xif l<x<2 atx=0,1and 2.

3x+4if x>2

9.5. MEAN VALUE THEOREMS

9.5.1.Rolle’s Theorem. The following theorem, known as Rolle’s theorem is one
of the most important theorem of real analysis. It is at the root of all mean value
theorems such as:

Taylor’s theorem and Maclaurin’s theorem which we shall discuss in the next lesson.
9.5.2. Rolle’s Theorem. Let f be a function defined on [a, b] such that

(i) fis continuous on [a, b] (i1) f'is derivable on (a, b)

(i) f (a) = 1 (b)

Then there exists a real number ¢ between a and b such that /' (¢) = 0.

Proof. Since f is continuous on [a, ] and every continuous function on [a, b] is
bounded on [a, b]. Therefore f'is bounded on [a, b].

Let M = Sup. f, m = inf. f
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Two different cases arise :
1. M = m. Then fis constant over [a, b] and consequently
f (x) =0 for all xe[a, b].

2. M = m. Since f (@) = f (b) therefore, at least one of the number M and m is
differ from f (a) and therefore, also from f'(b). For the sake of definiteness, assume that
M = f(a).

Since every continuous function on [a, ] attains its supremum therefore, there exists
some real number ¢ in [a, b] such that f (¢)= M. Further, since f (a) # M = [ (b),
therefore, c¢ is different from both a and b. This means that ¢ lies in the open interval
(a, b).

Since f (c) is the supremum of f on [a, b], therefore, f (x) < f (c¢) for all x in
[a, b]. This means that

[e=h=/ ), r

For all positive real numbers /4 such that ¢ — 4 lies in [a, b].

Taking limit as # — 0 and observing that since /' (x) exists at each point of (a, b),
and therefore, in particular at x = ¢, we have

Lf (¢) > 0 ...(i1)
From (i) we similarly have,
fle+h<f)

for all positive real numbers % such that ¢ + 4 lies in [a, b]. By the same argument
as we have

Rf (¢) < O ...(1ii)
Since f (x) exists at x = ¢, therefore
Lf (o) =/ () =Rf (¢) -(1v)

From (ii), (iii) and (iv) we find that /' (c¢) = 0.
Alternative Form of Rolle’s Theorem

If a function f (x) is such that

(1) it is continuous in the closed interval

(i1) it is derivable in the open interval
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(i) f (@) =f (a + h)
then there exists at least one number such that
f(@a+6h)=0,0<0<1

(Because the number ¢ which lies between a and a + & must be greater than a
by a fraction of 4 and may be written as ¢ = @ + h where 0 < 0 < 1.

Note : Rolle’s theorem fails to hold good for a function which does not satisfy even
one three conditions stated above.

9.5.3. Geometrical Significance of Rolle’s Theorem. When geometrically interpreted,
the conclusion of the theorem states that the ordinates of the end point A, B being equal,
there is a point on the curve the tangent at which is parallel to be cord AB (x-axis).

C2
C1
c A jB
@) fo) N . s /i
: : X ' :
O a | b /' a o -5-4‘ ey 0

Example 9.5.4. Verify Rolle’s Theorem for the function
f(x) = x*— 6x + 8 in the interval [2, 4].
Solution. Here a = 2, b =4

1. f(x) = x2 — 6x + 8 f (x) is a polynomial. Since every polynomial is a continuous
function of x for every value of x.

f (x) is continuous in the closed interval [2, 4].
2. f (x) = 2x — 6 which exists in the open interval (2, 4).
3./2)=4-12+8=0
f@4)=16-24+8=0
f@=0=7®
f (x) satisfies all the conditions of Rolle’s Theorem. Hence there must exist at least

one number ¢ between 2 and 4 such that /' (¢) = 0.

106



Now f (x) = 2x — 6. Therefore /' (c¢) = 0 gives 2¢ — 6 = 0, ¢ = 3.

This is a point in the open interval (2, 4) and therefore, the theorem is verified.

Example 9.5.5. Discuss the applicability of Role’s theorem of the function
fx) =2+ @x-1D*in [0, 2].

Solution. Here f (x) =2 + (x — 1)¥3

2
S =3 =P (1)

Equation (1) shows that /' (x) does not exist at x = 1 e (0, 2). Therefore Rolle’s
theorem cannot be applied.

9.6. EXAMINATION ORIENTED EXERCISE/ LESSON END
EXERCISE

1. Verify Rolle’s Theorem for the function (x — a)? (x — b)* in the interval [a, b].
. Verify Rolle’s Theorem for x3 — 4x for the interval [-2, 2].

. Verify Rolle’s Theorem for the function £ (x) = 8x — xZ in [0, 8].

. Verify Rolle’s Theorem for the function f (x) = x (x + 3) €72 in [-3, 0].

& S N\

. Verify Rolle’s Theorem for the following functions :

1) f(x)=sinxin [-7, ©] (i1) f (x) = €* sin x in [0, 7]

(i) f (x) = log x [0, €]
6. Discuss the applicability of Rolle’s Theorem to the function f(x) = [x] in [-1, 1].
7. Can Rolle’s Theorem be applied to

(i) f (x) = tan x in [0, 7] (i) f (x) = sec x in [0, 27]
ANSWER
l. ¢ = 3b + 4a) 2. ¢ = 1.555 (approx.) 3.c=4 4.C=2=2

s 3
5.(0) c= 5 (i) c = —m (iii)) ¢ = 6. not applicable

4

~|a

7. (1) Rolle’s theorem cannot be applied. (ii) Rolle’s theorem cannot be applied.
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9.7. LAGRANGE MEAN VALUE THEOREM
STATEMENT. If a function f (x) is such that
(1) it is continuous in the closed interval [a, b]
(ii) it is derivable in the open interval (a, b), then there exists at least one value ¢

f(b;—f(a)zf,(c)‘
—a

in open interval (a, b) such that

Proof. Consider the function
F(x)=f(x)+ Ax (1)
where A is the constant to be determined such that
F (a) = F (b)
Now F (a) = f(a) + Aa, F (b) = f(b) + Ab
Since F (a) = F (b)
f(a)+Aa = f(b) +Ab
or  f(b)-fla)=-A0-a

b) —
—Azi%%fgl (i)

Now f (x) is given to be continuous in @ < x < b and derivable in a < x < b.

Also, A being constant, Ax is also continuous at a < x < b and derivable in ¢ <
x < b.

F(x) = [f(x) + Ax] is

1. Continuous in the interval ¢ < x < b.

IA

2. derivable in the interval a < x < b.
3. F(a) = F(b)

. F satisfies all the three conditions of Rolle’s Theorem.Thus there must exist one
value c¢ in the open interval (@, b) such that F' (¢) = 0. Now F' (x) =/ (x) + A

F'(c) = 0 gives /' () + A= 0
or ~A=71 (o) ...(iii)

From (ii) and (iii) we get
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f(b;:i:(a) )
Alternative form of Lagrange’s Mean Value Theorem.
If a function f (x) is such that

1. it is continuous in the closed interval [a, a + h]

2. it is derivable in the open interval Ja, a + A[, then there exists at least one number
04 that f(a + h) = f (a) + hf' (a + 6h) where 0 < 0 < 1.

Proof. Let a + h = b.

f(b) - f(a)

=) Q)

Proved the first form

Because a + h = b

b — a = h, the length of the interval. The number ¢ which lies between a and
a + h must be greater than ‘a’ by a fraction of 4 and may be written as ¢ a + Oh where
0 is true positive fraction lying between 0 and 1, Let 0 < 0 <1.

S@r D= 1@ _ 0 on

(1) becomes
b-a

or  f(a+h)=f(a)£hf' (a+0h) where 0<0<1.

9.7.1. Geometrical Interpretation of Lagrange’s wean Value Theorem. Let A and
B be points on the graph of the function y = f (x) corresponding to x = @ and x = b.
Therefore the coordinates of the points A and B are [qa, f (a)] and [b, f (b)] respectively.

difference of ordinates /' (b) — f (a)

Slope of chord AB = — -
difference of abcissae b—a

Also slope of the tangent at any point P, for which x = ¢, is /' (¢).
By Lagrange’s mean value theorem, we have
................ =f(c),a<c<b

Slope of chord AB = slope of tangent at x = ¢
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f(a)

f(b) fla)i g

@ [omesnmmenf P>

O frememsncnanonnn
X
>

Thus Lagrange’s Mean value theorem asserts geometrically that there exists at least
point on the graph of the function at which the tangent is parallel to the chord joining the
points A and B.

9.8. SUGGESTED READING
The students are advised to go through following references for details

9.8. REFERENCES
(1) Real analysis by by J.N. Kapur & H.C. Saxena, S.Chand & Co.

(2) Real analysis by J.N. Sharma & A.R.Vashishtha,Krishna Publication, New
Delhi.

(3) Real analysis by Richard R. Goldberg, Oxford & IBH Publication Co. Pvt. Ltd.
New Delhi.

(4) A text Book of Real Analysis by Sunil Gupta, Narinder Kumar, Malhotra Brothers
Pacca Danga, Jammu.

(5) Real analysis by Jagdish Parsad Mittal & Neeraj Doda, Sharma Publication,
Jallandhar.

9.9. MODEL TEST PAPER
Q.1. Verify Rolle’s Theorem for the following functions :
1) f(x)=sinxin[-7, ] (i1) f (x) = " sin x in [0, m]

(iii) £ (x) = in [0, n]

Q.2. Discuss the applicability of Rolle’s Theorem to the function f (x) = [x] in
-1, 1].
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Q.3. Can Rolle’s Theorem be applied to
(i) f (x) = tan x in [0, 7] (i1) f (x) = sec x in [0, 27]
Prove that every differentiable function is continuous. Is the converse true?
Q.4. Show that the function is continous at origin but is not derivable at x = 0.
Q.5. Show that the function f(x) =|x — 4 |
Is continuous butnot derivable at x = 4.

Q.6. Examine the derivability of the function

—x%if x<0

5x—41if 0<x<1

f(x)=
4x* _3xif l<x<2 atx=0,1and 2.
3x+4if x>2
skeksksksksksksksk
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B.A. SEM-1V MATHEMATICS LESSON No. 10

APPLICATIONS OF DIFFERENTIABLE FUNCTIONS

10.1. Introduction: In this lesson some applications of mean value theorem are
discussed.

10.2 Objectives : The objective of studying this lesson is to explain the expansions
of some of important series of trigonometric functions.

10.3. CAUCHY’S MEAN VALUETHEOREM STATEMENT
If functions f (x) and g (x) such that
(i) both are continuous in the closed interval [a, b].
(ii) both are derivable in the open interval (a, b).

(ii1) g'(x) # O for any value of x in the open interval (a, b), then there exists at least

fB)=f(a) _ f()

one valuec of ¢ in the open interval (g, b) such that gb)—g(a) g(c)

Proof. Consider the function
F @)=/ (x)+Ag (x) (1)
where A is constant to be determined such that
F (a) =F (b)
Now F (a) = f (a) + Ag (a)
F(b) =1 (b) + Ag (b)
Since F (a) = F (b)
f(a) + Ag (a) = £ (b) + Ag (D)
or f ) -f(a)=-Alg(®) - g (a)
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\ fb)-f(a)
g -g(a

where g (b) — g (@) # O, because if g (b) — g (a) = 0, then g (@) = g (b).
T h e r e f 0 r e
g (x) satisfies all the three conditions of Rolle’s theorem = g’ (x) = 0 for at least one
value of x in the open interval a < x < b which is contrary to the given condition that
g (x) # 0 for any value of x in the interval a < x < b.

...(ii)

Since f'(x) and g (x) are both, given to the continuous in the interval and 4 < 9x < p,
derivable in the interval a < x <'b.

F@)=/f®+Ag X is
1. Continuous in the interval g < x <5b.

2. derivable in the interval a < x < b.
3. F (a) = F (b)

F (x) satisfies all the three conditions of Rolle’s Theorem.
Thus there exists at least one value ¢ in the interval a < x < b such that F' (¢) =0
Now F’(x) = f"(x)+ Ag’(x)

F' (¢) = 0 gives f (¢) + Ag' (c) = 0.
G
g'(c)

A= ...(iii)

From (ii) and (iii), we get

SB)=fa@) _ [
gb)—g(a) g'(o)

Corollary 10.3.1.Derive Lagrange’s Mean Value Theorem from Cauchy’s Mean
Value Theorem.

Proof : If g (x) = x, then g (b) = b, g (@) = a and g’ (x) = 1 for all x. Therefore
the result of Cauchy’s Mean Value Theorem viz.

SB)=fa@) _ [
gb)—g(a@) g'(o)

f®)=f(a)_ f' ()

—-a 1

reduces to = f'(c) which is Lagrange’s Mean Value Theorem.
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Alternate form of Cauchy’s Mean Value Theorem. If two functions f (x) and
g (x) are such that

(i) both are continuous in the closed interval [a, a + A]
(i1) both are derivable in the open interval (a, a + h).

(iii) g’ (x) = 0 for any value of x in the open interval (@, a + k), there exists at
least one number such that

flath)—f(a) _ f'(a+6h)
g(a+h)—g(a) g'(a+0h) where 0 < 0 < 1.

Physical Interpretation. We may write

Vb -f@i/b-a) _ f'()
{gla+b)-g(@}/(b-a) g'(c)

Hence, the ratio of the mean rates of increase of two functions in an interval is

equal to the ratio of the actual rates of increase of the functions at some point within
the interval.

Example 10.3.2. Verify Lagrange’s Mean Value theorem for the function

1
fx)=x(x-1)(x—2)in [0’5]

Solution. f)=xx-1)(x-2)
=x (x2-3x +2)
=x3 - 3x2 + 2x
ol )

a=0b=7

1
1. f(x) being a polynomial is continuous in the interval 0 < x < 5

1
2. f (x) = 3x% — 6x +2 which exists in the interval 0 < x < 5

Therefore by Lagrange’s Mean Value Theorem, we have
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f (b))~ f(a)

f@="—
1 3 ]
——=+1]|-0
(8 4 3
ie. 3¢2 - 6c + 2= 1 0 4
2
or 12¢2 - 24c+5=0
_ 24++/576-240 24++/336 24+ 421
24 24 24

= 1%@ = 1i%(4.58) =1+.76 =1.76, 24

1
Discarding the value ¢ = 1.76 which does not lie in the given interval (0, Ej =(0,.5).

1

¢ = 24, a value which lies between 0 and 5

Hence the verification.

Example 10.3.3. Find ¢ of Cauchy’s Mean Value Theorem for the pair of functions

£ ()= x, g(x)z%in[a, b,

1
Solution. f(x)=x, g(x) = T [Assuming 0 < a < b].
X

1 1
! x)= —— ’ X)=———
J'(x) N (x) edx
Both f (x) and g (x) are continuous in [a, b] and derivable in (a, b).
By Cauchy’s Mean Value Theorem we have
fb)=f(a) _ f' ()
gb)-gla) g'(o)
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1
a2
1 1 1

b Vo 2ee

or

Jab
or \/Z—\/Zm=—c

or —Jab = —c

c=4lab €(a, b)
10.3.4. Important Deduction from the Mean Value Theorem.

1. If f (x) be a function such that f (x)=0 for all values of x in a < x < b, then
f (x) is a constant in this interval.

Proof. Let x;, x, be any two values of x such that a < x; < x, <b.

Because /' (x) = 0 for all values of x in (@, b) and {x;, x,} = (a, b). Since f (x)
satisfies all the condition of the Lagrange’s Mean Value Theorem in [x, x,] therefore we
have

S )= f(x)

X2 =X

= f"(c) where x; <c<x,

But /' (x) = 0 for all x in (@, b). Therefore /' (c) = 0

= S-S (q)=(=-x)x0=0 ie [f(x)=/(x)

Since x; and x, are any two values of x in (a, b), it follows that /' (x) has the same
value for every value of x in (a, ). Hence f (x) is a constant in the interval (a, b).

Corollary 10.3.5. If two functions f (x) and g (x) have the same derivatives. Then
they differ by a constant.

Proof : Consider a function
F (x) = f(x) — g (x) where /" (x) = g’ (x)
Now F=/x-gx=0
By Deduction I, F (x) = ¢, a constant i.e., f (x) — g (x) = c.

2. If the derivative f' (x) is positive or zero in (a, b), without being always zero, then
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/() > f(a).
Proof : Let x|, x, be any value between a and b;then applying Mean Value Theorem

to the function f (x) for the two intervals [@, x] and [x, b], we get

S(x)—f(a) S(b)—f(x)
b—x

= f"(¢) and = f"(c)

where a < ¢;<xand x < ¢, <b.
But f'(¢;)>0 and f'(cy)20
Therefore, we get

S ()= f(a)20 and f(b)—f(x)20

= f(x)2 f(a) and f(b)= f(x)
= J(®)2 f(x)= f(a)
= f(b) = f(a)

But f(b) = f(a)

For, if it were so, then f(x) = f(b) V x €[a, b] and the function reduces to a constant

whose derivative is always equal to zero, which contrary to the hypothesis that /' (x) is
not zero in [a, b]. Hence f (a) > f (b).

3. If the derivative /' (x) is negative or zero in [a, b], without being zero always, then
f(b) < f (a). The proof is similar to (2).

Note. Increasing or decreasing function. A function f (x) in the interval (a, b) is
said increasing or decreasing function according as

S () >f(x) or f(xy) <f(x;) where a < x;<x, < b.

10.4 EXAMINATION ORIENTED EXERCISE/ LESSON END
EXERCISE

Q. Verify Lagrange’s Mean Value Theorem for the following functions and find ¢ if
possible

Lfx)=(x-1) (x—-2) (x—3) in [0, 4].

2. () = 2 _4 in[2, 4].

3. f(x) = log x in [1, €]
4. f(x) = ¢ in [0, 1].
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5.f(x) = x3— 5x2— 3x in [1, 3].

2x—1
3x—-4

6. f(x) = in [1,2].

Find ‘¢’ of Cauchy’s Mean, Value Theorem for the following pairs of function in [a,

T.f () =¢€" gx)=e”
8. f(x) sinx, g (x) =cos x

9. Verify Cauchy’s Mean Value Theorem for the functions £ (x) = x? and g (x) =
x3in [1, 2].

10. If in Cauchy’s Mean Value Theorem we write
1 1
fx)= -8 (x) = T then show that ¢ is the harmonic mean between a and b.
X

ANSWERS

1. ¢ = 3.155, .845 2. ¢

Y

3. c=e—-1

4. c=log (e -1

hd

o

[
W |

6. Theorem fails as there is no value of ¢ in (1, 2) that satisfies the conditions of
Theorem.

a+b g o a+b 9 o 1_

5 .c= > .c= 9

10.5. TAYLOR’S THEOREM WITH LAGRANGE’S FORM OF
REMAINDER AFTER N-TERMS

Statement. If a function f (x) is such that

7. ¢ =

Lo f(x), £1(x), £"(X),een.... , f”‘l(x) are continuous in the closed interval
a<x<a+h.

2. f"(x) exists in the open interval @ < x < a + &,

then there exists at least one number 0 between 0 and 1 such that
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f(a+h)=f(a)+hf’(a)+};—!—f”(a)+——f”'(a) ..... * oD

3 s (a)+h—n,—f” (a+6h)
: n:

Proof. Consider the function

(a+h-x)?

Fx= f(x)+@+h-x)f'(x)+ Y

(a+h- x)n_1 f"_l(x) N (a+h—-x)"

(n—1)! (n)!
where A is a constant to be determined such that

F()=F (a+h

(D)

n—1 hn

n-1
RNy

A

Now F (a) =f (a) + hf (a) + ......

Fa+h)=f(a+h
Since F (a + h) = F (a)

hn—l n

’ h2 " n—1 h .
fla+h)=f(a)+hf (a)+af (a)+...... +(n—1)!f (a)-l—;A ..(i1)

Now it is given that f(x), f'(x), f"(x),....... , f ”‘1( x), are continuous in the interval
a < x < a+ h and their derivatives f'(x), £"(X),.cccocrune.... " (x).

(a+h-x)>° (a+h-x)"

Also (a+h—x), Y py
(being polynomials) and A (being constant)

are continuous in the interval 4 < x < ¢ + 4 and derivable in the interval a < x <
a + h.

F (%) is 1. Continuous in the closed interval g < x<a+h

2. derivable in the open interval a < x < a + h,

and 3.F (@ + h) =F (a).
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Thus F (x) satisfies all the three conditions of Rolle’s Theorem. Therefore there
exists at one number 6 between 0 and 1 such that

F' (a + 6h) = 0.
Now F x)= f'(x)—f'(xX)+(@+h—-x)f"(x)—(@a+h—x)f"(X)+ .ceeurn...

....... +Mf”(x)—MA

(n—-1! (n—1)!

(@+h-x)""!

D! [f"(x) - Al

(a+h—a—0h)""
(n—1)!

But F'(a+6h) =0 gives [f"(x) - A]

n—1
(ath=a=01"  ‘pniyiom—aj=o

But F' (a + h) = 0 gives

(n-1)!
Now hA#0and1-06=0 [~ 0<0B<1]
A= f"(a+0h)
From (ii), we get
h2 ' hn—l -1 h}’l "
fla+h)=fa)y+hf'(@)+—f"(@)+.....4 ——f" " (a)+— f " (a+6h)
2! (n-1)! n!

h}’l
Then (n + 1)th term — f"(a+6h) is called Lagrange’s form of remainder after n-
n!

terms and is denoted by R,

10.6. MACLAURIN’S THEOREM WITH LAGRANGE’S FORM OF
REMAINDER AFTER n-TERMS

Statement. If a function f (x) is such that

L. £(x), £'(x), £"(x),.cn, £"71(x) are continuous in the closed interval [0, x].

2. f* (x) exists in the open interval (0, x) then there exists at least one number
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between 0 and 1 such that

’ x2 , xn—l ol X" )
f(x)=f(0)+xf(0)+2—!f (@)+....... +(n—1)!f (a)+mf (a +06x)

This we can get by putting @ = 0 and 2 = x in Taylor’s Theorem.
Taylor’s and Maclaurin’s Series
10.6.1. Taylor Series. Let the function f (x) possesses derivatives of all orders in

an interval [a, a + /], then for all positive integral values of n, we know that

2 n-1
fla+h)= f(a)ixf’(a)+% Fa@) + oo PR " Ya)+R,
! (n—1)!

n
where R, =h—'f”(a+6h), 0<0<1
n!

If now R, — 0 as n—>c0, then

n—1
fla+h)= lim f(a)+hf(a)+....+——f""a)+R,
o (n—1)!
where R, — 0 as n—>o, then
hn—l
fla+h) = lim | £(a)+ hf (@) + e+ "N
n—» o0 (n-—lﬂ
so that we see that the series
@ =@+ @bt 2 )
a) = a 2' a)t ......... (n B 1)'

is convergent and is sum is f (a + h).

Thus we have shown that if f (x) possesses derivatives of all orders in the interval
[a, a + h] and the remainder R,, tends to zero as n-tends to infinitely, then

h2 n—1

f(a+h)=f(a)+hf’(a)+7f”(a)+ ......... +xn' F"0)+..... ..(A)
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This series is called Taylor’s series.

10.6.2. Maclaurin’s Series. Put ¢ = 0 and £ = x in (A), we have

2

ﬂﬂzﬂ@+ﬁ@ﬂ%ﬁﬂm+ ......... +%ﬂﬁ®+ ....... .(B)

This series is called Maclaurin’s series.

Note. Put 7 = x — a in (A), we get

N2 Y/
fu):fwyux—@f«w+£15?—f«@+ ......... =£1;?—fww+

(0

This is another form of Taylor’s series.

Example 10.6.3. Expand ¢* by Maclaurin’s theorem with Lagrange’s form of
remainder n-terms.

Solution. Here f(x)=a* = f'(x)=a"loga, f"(x) = a*(loga)
f"(x) = a*(log )"

Putting x = 0, we get  £"(0) = (loga)”
£(0) =1, £7(0) = loga, £"(0) = (loga)*.........

£"710) = (loga)"™" and " (6x) = (aB)* (log a)"

By Maclaurin’s Theorem with Lagrange’s Form of remainder after n-terms, we have

2 n—1 n
ﬂﬂzﬂ@+ﬁ@ﬂ%ﬂ%@+ ......... 2 L)+ 2 £ (o)
! (n—1)! l
0<0<1)
L +ﬁa )2+ +xwla W*+ﬂa )
a* =1+xloga 5 oga)  +....... D! oga py oga

n
Here Lagrange’s remainder after n-terms = x—‘(log a)" where 0 <0 <1.
n!
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x
Example 10.6.5. Expand tan! x in powers of [X ——]-

Solution. By Taylor’s series,we know that

4

f(x)=f(a)+(x—a)f' (a)+( ) f"(a )+( ) f"(a)+..... (1)
Here f(x)= tan™! x and a =%
| T
f(a) tan Z
f!( )_ f’(a)_;
BT 1+(“]2
4
_r
" — —2x " — 2
/M@ (1+x%)? 7@ (1 2Y
(16
Putting in (1), we get
Py I
tan_lxztan_IEJr[x—E) ! +[ 4] 23 S SO
4 4 2 2! 2\2
I+ 1+
16 16)
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Example 10.6.6. Prove that

X h? 1+2x* W

| . 1
sin” (x+h)=sin" x+ + —_—t——

1-x

Solution. Here f (x + &) = sin™! (x + &)

f(x) =sinlx
1 _l
S1(x) = =(1-x%) 2
V- x2
1 _é
fr@) === 2.(—2x)=-——4f—j;
(1-x%)2
3 1

1

1.(-x%)2 —x%(l—xzﬁ(—zx) - 3202

f(x) =

(1-x*) (1-x%)

1
CA=xDH2[-x? +3x%] 14247

By Taylor’s series, we know that
h* "
f(x+h) :f(x)+hf’(x)+7f”(x)+?f”’(x)+ ......

h h? x P14+ 2x?
> T o 22 T3y 252
Ji—x2 20 (a-x) U(1-x%)

sin_l(x +h) = sin ! x+

2. h . x ﬁ+ 1+ 2x? £+
\/1_x2 (1_x2)3/2 2' (1_x2)5/2 3] ......

=sin_
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10.7. EXAMINATION ORIENTED EXERCISE/ LESSON END EXERCISE

Q.1. Expand ¢* by Maclaurin’s theorem with Lagrange’sform of remainder after n-
terms.

Q.2. Show that

2 3 n— n
log(l4+x)=x— "t g ()" 2" — 2 for x> -1
-1 n(l+ 06x)
2 3 n_2n
X -D"x
cosx=1—-—+—+....... +——t...... forall x eR
Q.3. Prove that YT 2m)!

Q.4. Find the Taylor’s series about x = 2 for f(x) = x> + 2x + | (-0 < x < ).
Q.5. Expand (i) x> in powers of (x — 1)

(i1) sin x in powers of (x — 4)

(iii) x" in powers of (x — a).
Q.6. Assuming the possibility of expansions :

Prove the following :

2 3
(i) " =e" 1+h+h—+—+ .........
21 3!
2
(ii) tan~"(x+ k) = tan”" x + —" - xhz S
I+x= (A+x7)

2

(iii) logsin(x + h) =logsinx + hcotx — %hzcosec X+ %h3 cot x cosecZx + ...

Q.7. By Maclaurin’s theorem or otherwise, find the expansion of
sin (¢ — 1) upto and including the term in x*.

Q.8. Assuming the possibility of expansion, obtain the following :
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2 3 4

x* X x
i) logl—-x)=x———-—"——"—+.....
(i) log(1-x) >3
o X
(i) sinax = ax — + — e
3! 5!
¥ oxt i«
iii) logsecx =—+—+—+.......
(iid) log 2 12 46

10.8. SUGGESTED READING

The students are advised to go through following references for details

10.9. REFERENCES
(1) Real analysis by by J.N. Kapur & H.C. Saxena, S.Chand & Co.
(2) Real analysis by J.N. Sharma & A.R.Vashishtha,Krishna Publication, New
Delhi.
(3) Real analysis by Richard R. Goldberg, Oxford & IBH Publication Co. Pvt.
Ltd. New Delhi.
(4) A text Book of Real Analysis by Sunil Gupta, Narinder Kumar, Malhotra
Brothers Pacca Danga, Jammu.
(5) Real analysis by Jagdish Parsad Mittal & Neeraj Doda, Sharma Publication,
Jallandhar.
10.10. MODEL TEST PAPER

Q.1. Expand ¢* by Maclaurin’s theorem with Lagrange’sform of remainder after n-

terms.

Q.2. Show that

2 3 n—1 n

log(l4+x)=x— "ty ()" 2" — 2 for x> -1
2 3 n—1 n(l+ 0x)"
2 3 n_2n
X -D"x
cosx=1—"—+"—+.... ... forall x eR
Q.3. Prove that YT 2m)]

126



Q.4. Find the Taylor’s series about x = 2 for f(x) = x> + 2x + | (-0 < x < ).
Q.5. Expand (i) x* in powers of (x — 1)

(i1) sin x in powers of (x — 4)

(iii) x" in powers of (x — a).
Q.6. Assuming the possibility of expansions :

Prove the following :

(i) &= ¢ 1+h+;+—+ .........

(i) tan"'(x + h) = tan"" x +

2 2

) . 1 1
(iii) logsin (x + /) = logsin x + hcot x — Ehzcosec x +—h° cot x cosecZx +.....

Q.7. Assuming the possibility of expansion, obtain the following :

2 3 4
x° x x
i) logl=-x)=x——-——-——+.....
(1) log(1-x) 2 3 a
P X
(ii) sinax = ax — + — e
3! 5!
sieskeskeseskekekekek
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B.A. SEM-1V MATHEMATICS LESSON No. 11

COMPLEX TRIGONOMETRY

11.1. Introduction : In this lesson the concept of De Moivre’s theorem and its
application is discussed.

11.2 Objectives : Objective of studying this lesson is to explain De Moivre’s theorem
and its application in solving problems.

11.3. COMPLEX NUMBERS

The students is already familiar with the idea of a complex numbers. In the domain
of real numbers there is no number which satisfies the equation x2 = — 1. In order to
enlarge our conception of number in such a way that it may be possible to apply the
algebraical operation of root extraction to any number whatsoever, a new kind of number,
denoted by i and known as the imaginary unit is introduced.

This number is defined as satisfying the fundamental laws of algebra, associative,
commutative and distributive, and as being such that 2 = — 1.

This generalisation of the idea of number is valid one since no deductions from it
lead to contradictions.

A number of the form z = x + iy, where x and y are real numbers, is called a complex
number ; x is called its real part and is denoted by R(z) , while y is called its imaginary
part and is written as I (z).

If y = 0, the number is purely real; if x = 0, it is purely imaginary.

All the operations of algebra-addition, subtraction, multiplication, division, and root
extraction. — apply to complex numbers, and they satisfy the fundamental laws, associative,
commutative and distributive of these operations.

We also know that if two complex numbers are equal, then their real parts are equal
and their imaginary parts are equal. In particular, the complex number x + iy cannot have
the value zero unless x andy are both zero.
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11.3.1. Geometrical Representation of a Complex Number — The Argand
Diagram.

We know how a real number can be represented by a point on a straight line.

With the complex number z = x + iy are attached two real numbers x and y,
occuring in a particular order i.e., x coming first and y after it. In other words, with the
complex number z = x + iy is associated an ordered pair (x, y) of real numbers. Thus
ordered pair of real numbers gives us a definite point in a plane with x as its abcissa and
y as its ordinate. In this way we get a method of representing a complex number
geometrically by a point in a plane.

Y

Thus, the complex number z = x + iy is P(x, )
represented geometrically by the point P whose ’
rectangular co-ordinates are x and y. id

It is clear that the complex number z =
x + iy defines unique point P (x , y) and
conversely the point P (x, y) defines a unique
complex number z = x + §).

X’ 0 x X

Y'
The point P is said to be “the point
corresponding to the complex number z” or
simply “the point z”.

This sort of geometrical representation of complex number by points in a plane was
suggested by Argand, a Swiss Mathematician, in 1806, and so the diagram representing
complex numbers by points is called the Argand Diagram.

The plane in which we draw this diagram is sometimes called the Complex Plane.

If the complex number z = x + iy has its i

imaginary part y = 0, then it becomes purely
real. In this case it is represented by the point (s,
0) which lies in x-axis. Thus, purely real numbers
are represented by points lying on x-axis. For the X'
reason in an Argand diagram the x-axis is called

the real axis.

o | masmany axix

reaLaxx X

Similarly, purely imaginary numbers are
represented by points which lie on y-axis and, for
this reason, in an Argand diagram the y-axis is
called the imaginary axis.

Example 1. Find the points corresponding to the complex numbers

3+4,-2+5i,-2-3i,2-7i 35, 6i.
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Solution. The points are (3, 4), (— 2, 5), (-2, - 3), (2, = 7), (5, 0) and (0, 6)
respectively.
Example 2. Find the complex numbers corresponding to the points
(_ 17 - 1)5 (0’ - 2) and (_ 3a O)

Solution. The complex numbers are — 1 — i, — 2i and — 3 respectively.

11.3.2. The Modulus and the Amplitude of a complex number. Let P be the
point z = x + iy. Let the polar co-ordinates of P be (7, 0), where 7 is the positive measure

on the length of OP, and 0 is the measure of the angle XOP.

X
—=cosO = x=rcosO

oM
Then, —— =cos0 =
r
Y

PM . P(xy)

—— =sinB ;
Parallelly OP T 8

. 0.
PM = OP sin 6 X ol = N X
y =rsin 0
x =rcosO Y’
and y = rcos0O (1)

From these equations we get

ro=aJx? + y2
and 0= tan_IZ -(2)
X

The number r is called the modulus of z and is written as mod z or | z |, and the
number 0 is called the amplitude of z and written as amp z.
2 and amp z = tan! =
X

Thus, if z=x + iy, then |z|= x2+y

Cor. |-z|=|-x—iy| =(=x)? + (-y)? =yx? + 3% = z].
Principal value of the amplitude
Note 1. Obviously, 6 = amp z has many values differing from one another by

multiplies of 20.
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The value of 6 which lies between — m and = is called principal value of the
amplitude.

As a rule, when we speak of the amplitude, we always mean the principal value of
the amplitude.

Thus, — © < amp z < T.

Note 2. The basic equations connecting (x , y) and (r, 0) are

x = r cosf
y =rsin0 (&)
From these, by division, we obtain
tan® = 2 or 0 = tan~! (Zj ...(B)
X x

The value of 6 which satisfies the two equation of (A) simultaneously will satisfy
(B), but all the values of 8 which satisfy (B) may not satisfy (A).

Hence, 0 should be obtained from (A) and not from (B).

Note 3. z = r (cos O + i sin 0) expresses the complex number z in terms of its
modulus and amplitude.

It is called the trignometric form of z.

11.3.3. Example. Express the following complex numbers in trignometric form,
indicating the modulus and amplitude in each case :

L+ i3, —1+i3, i3, —1-iVf3,2, -2, 2, —2i
Sol. (i) 1+iV3

Here rcos =1 (1)
and rsin0 = \/g

Squaring and adding, we get #° =4 or r=2.

Substituting for 7, we get

cos0 =

N | —

and sin0 = —3
2
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0 =— (principal value)

w3

Hence, 1+ i\/_ =2 (cosg +1 singj

It may be noted that the modulus of the given complex number is 2 and
11.3.4. Modulus of a sum
Theorem 1. |z +2z, [<|z |+ |2, |

Proof. |z + 2 [S|z1 |+ 2 |

or if \/(x1 +2)2 + (0 + 1) < \/x12 + 3+ \/xzz + ,°

or

(xp +x2)% + (0 + 12)? < (% + 32) + (0% + P + 2\/x12 + ylz-\/xzz + 35°

or if X1Xy + V1o S\/xlz + y12 -\/3522 + y22
or if (X xy + y1y2)2 < (xl2 + y12) (X22 + y22)
or if 2x1% )1y < x12y22 + X22J/12

or if 0 < (13 = %0’

or if (x1yy — X,¥;)> >0 which is always true.

Hence, the result.
Second Proof.

See the construction for the sum of two complex numbers
|z [= OP, | z; | = OP, = PP,

and |Zl+22|=OP.
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In triangle OP P, we have P(z,z,)

OP < OP, + P,P e
|21+ 2z [z [+] 2] P(z)
Cor. 1. The result can be extended step by step. X' o X
Thus, lz1+zp +z3 |[S| 71+ 25 |+ | 23 |
v

S|Zl|+|22|+|23|, etc.

In general,
| zp + 25 + . +z, S| zp |+ ]z | 4o +1z,|

Cor2. |a—2l=la+E)I<lz]+[-2]
But | =z =12, |

lz1 =z S|z [+] 2 |
Cor 3. |z—-z 2|z |-z |
Proof. [z |=|(zy-z)+ 2 [<|zi—z [+]| 2 |
or lz1 | =1z |S]z1— 2y |

21—z 2|71 [ =]z |
11.3.5. Modulus and amplitude of a product
Theorem 3. | ziz, |=|z|.] 2z, |

and amp (z,z,) = amp (z;) + amp (z,).

Proof. Let z =7 (cosO +isin6;) and =z, =7, (cos6, +isinb,)

Then, 712y = 11y [cos(0; +0,) +7sin(0; + 0,)]
21z [= 1 =l z [.[ 2 |

Also, amp (z;z,) = 0, + 6, = ampz, +ampz,

For any complex number z = x + iy
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we have z=x+iy=x-iy and z+z=2x = 2Rez=z+z

zZ—Zz

Also  z-z=2y = Lz="—
2i

Also zz = (x + iy) (x —iy) = x> + y* > 0 always. The non-negative square

root of zz is called modulus or the absolute value of the complex number z and denoted

by

|z|=+\lzg = |Z|2=Z;

Note that | z|=|z|and R(z) <| z|

11.4. DE-MOIVRE’S THEOREM

Statement of De Moivre’s Theorem.
If O is real and # is rational, then the value, or one of the values of
(cos B + i sin B)" is cos nB + i sin n0.
Proof : Case I. When n is positive integer.
By actual multiplication, we have
(cos 0; + i sin 0) (cos 6, + i sin 0,)

= cos 0y cos 0; —sin 0, sin 0, + i (sin O; cos O, + cos 0, sin 0,)

cos (0, + 0,) + i sin (0, + 0,)
Again, (cos 0, + i sin ;) (cos 0, + i sin 0,) (cos 05 + i sin 0;)

= [cos (B + 0,) + i sin (B + 0,)] (cos 05 + i sin 05)

cos (0, + 6, + 05) +isin (0, + 0, + 03)

Hence, by repeated multiplication and using of (1), we get

(cos 0, + i sin ;) (cos 0, + i sin 0,)......... (cos 0, + isin 6,)
=cos (0 + 0, +......... +0,) +isin (0, + 0, ... +0,)
Now put 6, =0, = ........ 0, =

We get, (cos 6 + i sin )" = cos n0 + i sin n0

Thus, if n is a positive integer, (cos 0 + i sin 0)” = cos n0 + i sin n0.
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Case II. When n is a negative integer.
Let n = — m, where m will be a positive integer.
Then, (cos 0 + i sin 0)" = (cos 6 + i sin 0)"

1
- (cosO + i sin0)”

B 1
cosm0 + i sinm0

by case |

cosm0O — i sinm0

- (cosmO + i sinm0) (cosmO — i sin mO)

cosmB — i sinm0

cosZ m0 + sin? m0

= cosmb — i sinm0
= cos(—m0) + i sin(—mO)
= cosnd + isinnd

Thus, if n is a negative integer.

(cosO + i sin0)"” = (cosnb + i sinn0).

Case III. When n is a fraction, positive or negative.
In this case, we show that one of the values of

(cos O + 1 sin )" is cos nO + i sin nb.

p
Let n= ;’ where ¢ is a positive integer, and p an integer positive or negative.

4
Suppose further that the fraction ; is in its lowest terms i.e., p and ¢ have no

common factor.

q
Now (cos £6 +1 sinﬁej = Cos (q . bl Oj + 1 sin (q .EGJ, by case I
q q q q
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= cos pB +i sin pO

= (cosO +isin@)? by case I & 1I

cos 20 +isin 20 is one of the gth roots of (cos 6 + i sin 6)
q q

ie, cos20+isin20 is one of the values of (cos O + i sin O)?
q q

Thus, if n is a fraction, positive or negative, then one of the values of (cos 0 + i
sin 0)" is cos 1B + i sin n0.

Note 1. It may be noted that if n is integral, then (cos 6 + i sin 0)" has only one
value and this value is cos #0 + i sin #n0. On the other hand if »n is fractional, then
(cos O + i sin B)" has several values and one of its value is cos #n0 + i sin n0.

2. De-Moivre’s theorem holds for all values of n and 0, real or complex, but we
have proved it only for real 0 and rational n.

Cor. If n is integral, (cos 6 — i sin 0)" = {cos (— 0) + i sin (— 0)}"
= cos (— nB) + i sin (— nB) = cos nB — i sin nO
If n is fractional, one of the values of

(cos B — i sin )" is cos nO — i sin n0).

o (cos30 + i sin 39)5 (cosB — i sin 6)3
Example 11.4.1. Simplify (cos 50 + i sin50)7 (cos 20 — i sin20)°

Solution. The given expression

{(cos 0 + i sin0)3}> {(cosO + i sin) ™1}
{(cosO + i sin0)>}7 {(cosO + i sin®) 2}

(cos® + sin 9)15(cose + i sin 6)_3

- (cosB +i sine)35 (cosO +i sine)_10

= (cos O + i sin 0)15335%10 = (cos O + ; sin B) 13

= cos 130 — i sin 1360.
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1

T .. T) 2
cos— —isin—
6

1

T, . m\2
cos— —isin—
( 6 6)

Solution. The given expression is

Example 11.4.2. Simplify (

11

T, . T\ 2
cos— —isin—
( 6 6)

- 1

T .. m\2
cos— —isin—
( 6 6)

[ T . nj6
=| cos— —isin—
6 6

=COST—1sinm
=-1
Example 11.4.3. Simplify the following :

(cosB + i sin 9)6 (cos30 + i sin 36)8
(cos50 + i sin 56)4 (cos20 + i sin 29)7

(if) (sin® + i cos0)~10.

(cosB + i sin 9)6 (cos30 + i sin 36)8
(cos50 + i sin 56)4 (cos20 + i sin 29)7

Solution. (i)

_ (cos60 + i sin60) (cos240 + i sin240)
(cos200 + i sin200) (cos140 + i sin140)

[Using De-Moivre’s Theorem]

137



cis60 . cis 2460
= cis 200 _cis 140 [** cosa +isino = cisa |

_ cis(60 + 240)

—m [+ cisa cisP = cis(a + B) ]

_os300 e (300 — 340) o B s (e - B)
cis 340 cis B

= cis (—40)

= c0s40 — i sin40 [+ cis(—a) =cosa —isina |

(if) (sin® + i cos0)10

(o) o]

T .. T
cos [_10 (E - eﬂ +1sm {_10 (5 - eﬂ [Using De-Moivre’s Theorem]|

cos (100 — 57) + i sin (100 — 5m)

cos (57 —100) — i sin(5® —100)

cos (4n + © —100) — i sin(4m + w —100)

cos (1t —100) — i sin(n — 100)

= —cos 100 — i sin100.
Example 11.4.4. Prove that
n

nm . . [ nm ) ]
= COs 7 —nB | +isin 7 —n0 |, where n is any Integer.

1+sinO +1icosO
1+sin0 —icosO

1+sin@ +1i cosOJ B sin20 + cosZ 0 + sin O + i cosO

= [Note it

Solution. ( 1+sin® —icosO

1+sin0® —icosO
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carefully]

B (sin2 0 — i% cos? 0) + (sinO + i cos0)
1+sin® —i cosO

_ (sin0 +7 cos0) [sinO — 7 cosO + 1]
1 +sinB —icos0

=cos(£—9)+isin(£—9j
2 2
1+sin@ +icos0O ! T L. (m !
- =|cos|——0|+isin]——-0
1+sin0® —icosO 2 2

nm . . (nm ) _
= Ccos 5 nb | +isin 5 no [Using De-Moivre’s Theorem]

=sin0 + i cosO

which is to prove.

1 r, 1 .
Example 11.4.5. If 2cos0 = x+—, prove that 2€0s70 = x" +— where r is
x x

a integer.

[
Solution. 2c0s® =x+— gives x2—-2xcos® +1=0
X

3 2cosO £ /4 cosZ0—4

2

=cosO *+isind

X
. 1 -1 ]
Take X =cosO+isin0 = —=Xx =(cosO+isin0b)
X

Then, x"+ Lr = (cos0 +isin0)" + (cosO + i sinO)™"
x

= (cosr0 + i sinrB) + (cosrd — i sinrb)
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=2 cos r0

If x=cosO—isinb, then l =x1= (cosO — isin@)_1
x

then x"+ ir = (cos0 — i sin0)" + (cosO — i sin®)™"
x

= (cos70 — i sinr0) + (cosrO + i sinr0)
=2 cosr0.

11.5. EXAMINATION ORIENTED OBSERVATIONS

1. If z=cos 0 + i sin 6, then prove that

1 1 )
(i) z+—=2cos0 (i) z——=2isin0
z z
.o n 1 — 2 e . n 1 — 2 . s e
(iif) 2 +Z—n = ZC0osn (iv) =z —Z—n = Z18nn
2
72 _
v =i tan0
®) 2241

2. Simplify following :

(cosa + i sina) (cosP + 7 sinf)

@ (cosy +isiny) (cosd + i sind)

(cosB — i sin 9)10

(i) (cosO +i sinf))12

(cos26 + i sin 29)5 (cos30 + i sin 36)2
(cos 46 — i sin40) (cosO + i sin 6)18

(iii)

3. Prove that  (sin® + i cos0)” = cosn (g - 9) +isinn (g - Gj and deduce
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1+sin®+icosO) (TE j .. (n j
- =cosn|——0|+isinn|—-0
1+sin0® —1icosO 2 2

4. Prove that (1 + cos® + i sin®0)" + (1 + cos® — i sin0)" = 2"*! cosng cos”g.

5. If a, b are roots of x2 — 2x + 4 = 0, then a" +b" =2""cos .
6. Evaluate
() B+ +( W3- @) (1+0" +1-0)"
7. If x, = cos 2% + i sin 2% then prove that x x; X3.......... upto infinity = -1

where r =1, 2, 3,.......

1 1
8. If x+—=2cosO, y+— =2cos¢ then prove that
X Y

x"y" + = 2 cos (m0 + n)

xmyn

11.6. TO FIND THE ¢TH ROOTS OF ANUMBER

Let z=r (cos O + i sin 0) be a given number.

1
We know that z9 has g values. We wish to find all the values.

1 !
Now, z9 =79 (cosO +isin0)9

1 1

i {cos (2nm + 0) + i sin (2n7 + 9)}; ’

when 7 is any integr, positive or negative, or zero.
By De-Moivre’s theorem one of the values of the right hand side is
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1
q{ 2nt+0 | . 2nn+9}
r? <{cos + 1 sin
q q

Therefore, by giving n the values 0, 1, 2,......, ¢ — 1

We see that each of the quantities

1
6 .. 0 - 2n+0 . . 2n+0
r9 Jcos—+isin—¢, r? | cos + i sin
q q q q

1
L {COS 2 -Dr+0 .. 2(g-Du+ e}
q q

.........

1s one of the values of z.

The number of these quantities is g and they are all distinct because all the angles
involed therein differ from one another by less than 27, and no two angles differing by
less than 2w have their cosines the same and also their sines the same.

1
Hence, these are the ¢ values of z9.

Note. If we give n values beyond ¢ — 1, we do not get any fresh value of z, the
same values are repeated.

For example, putting n = ¢, we get

1 1
rd {coszqn—JFBJrisin 2(17:_4—6} =r4 {cos [2n+9j+isin (2n+9j}
q q q q

1

q[ 0, . ej
=r?|cos—+isin—|,
q q

which is the same as the first value.

Note. The polar form of
l1=cos0+isin0

—1=cosm+isinmx
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3 .. 3m
—i= cos7+zsm—

Example 11.6.1. Find the cube roots of unity.

Solution. 1 =cos 0 +isin 0
()3 = (cos0 + i sin0)"/3

= {cos 2nm + 0) +isin(2nn + 0)}/3, n=10,1,2

= coszn—n+isin2n—n, n=20,1,2
3 3
Putting n = 0, 1, 2, we get for the three cube roots

T .. 2% 4 . . 4=
1, cos? + i sin—, cos— + i sin—

or l, ——+i—,———i——.

Example 11.6.2. Find all the values of (—1)1/3.

Solution. —1=cos n+isinw
(—1)1/3 = (cosT + i sin 7:)1/3

= {cos(2nm + m) + i sin(2nmw + TC)}l/3

2nm+m .. 2nm+ T
= Ccos +1isin

Putting n = 0, 1, 2, we get the required values

n .. mn 1 i\/§ 1+i\/§
coS— +isin—=—+— =
3 3 2 2 2

cosm+isint = —1
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St .. 5m; b .. b .
coOS— +isin—=cos|2n—— |[+ism|2n—— |=——i— =
3 3 3 3 2

Example 11.6.3. Find all the values of (1 —+/=3)/4,

Solution. Let us first express

1-J-3=1-i3

For trignometric form.
Let 1-i3=r (cos0 + i sin0)

Then, rcosB =1, and rsin® = —/3.

These equations give r = 2.

Substituting for r, we get

1 . 3 i
cosO = 5 sin@ = 5 which give 0 = 3

oefi=afon{ 5o ()
fof-5)eoe(3)

1

{cos(i’nn —gj + i sin (21175 —gj}‘l ,n=0,1,2,3
1

=24 {cos6nn_n+isin6nn_n ,n=20,1,2,3
12 12

Putting n = 0, 1, 2, 3, we get required values :

=

1
(1-i3)4 =2

N

=2
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1 1

24 Jcos - — i sin—~ , 24 cos5—7t+isin5—Tc
12 12 12 12

1 1
24 cos&-l—isinE =24 {cos (n—£j+isin n—l
12 12 12 12

1
— 24| —cos L +i sinij
12 12

1

= —2Z cosi -1 sini
12 12

= 2Z —0055—7t -1 sins—Tc
12 12

1
=24 cos5—7t +i sins—Tc
12 12

On combining, we get four roots on

1 1
+24 Jcos =~ — i sin~ , 24 coss—n+isin5—n )
12 12 12 12

Example 11.6.4. Solve the equation 7 . 4 1 3 11 =0.

Solution. The equation is (x* +1) (x> +1) =0

Taking the first factor, we get

*+1=0
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1/4 2nm+m . . 2nm4+ T
or x=(CD"= COSTJFISIHT- (reference to example already

solved)

Putting n = 0, 1, 2, 3, we get the solutions

T ,. T 3n . . 3m S0, . 5m n . . Tn
cos— +isin—, cos— +isin—, cos— + i sin—, cos— + i sin—.
4 4 4 4 4 4 4
Taking the second factor, we get
¥+1 =0
2nm + . 2nm+
or X = (_1)1/3 — COS%"'ZSIny, n= 0’ 1’ 2

Putting n = 0, 1, 2, we get the solution
T .. T Sn .. 5m;
cosg +isin—, —1, cos— +1i s1n?

Hence all the roots are known.

Examplel1.6.5. Find nth root of unity and prove that the sum of their pth powers
always vanishes unless p be a multiple of n, (p being and integer) and then sum is #.

Solution. (1)7 = (cos 0 + i sin 0)!/”

[cos (2rm + 0) + i sin 2rm + O)]', r=0, 1, 2,....., n—1

2rm . . 2rm
= C0OS—— +i1sn—— where =20, 1, 2, 3,......... ,n—1
n n
Putting » = 0, 1, 2,........... , n— 1, we get the n roots as
. 2 . . 2n 4t . . 4nm 2m-OHn . . 2(n—-D=
cos0+isin0, cos— +isin—, cos— + i Sin—,........ , COS——— + isin———
n n n n n n

The pth powers of the roots are

p » ~ ) )
m*, (Cosz_n +i sinﬁj s (COSﬂ +i sin4—nj yereneae , {cos 2(n = Dm + i sin 2(n l)n}
n n n n n n
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2 .2 4 . 4 2 -1 .2 -1
or 1, cos pn+is1n pn,cos pn+is1nﬂ, ........ , COS p(n )n+is1n p(n—Dx
n n n n n n
2pm . 2pm
or 1, #, 2. , "1 where t = cos LT 4 jsin 2P
n n
Case I. Assume that p is not a multiple of n,
sum of roots = 1 + ¢ + 2 + ....... + -1
_ 4 1-7"
_ - Sn:a( )
1—t 1—7"

5
n n

n
=L [1—(0052P;n+isin2plj }
1-1¢ n n

= % [1—(cos2pm +isin2pn)]

2 n—1
2 .2 2 L2 2 .2
or 1 cOs—anrism pn,(cos pn+ism pnj yreeens (cosﬁ+ism pnj

1 -
= [I-(+io]=0

Case II. Assume that p is a multiple of n. Sum of roots = 1 + ¢ + 2 +....+ "~

1+ (cosM +1i sin%j + (cos 4pr + i sin 4pn] F oo,
n n n n

+ 1 SIn
n n

+{cos2p(n—l)n . Zp(n—l)n}

Take p = kn, where k is an integer.

=1+ (cos2km + i sin2km) + (cos4km + i sindkm) + ............

+[cos2k(n—1) m+isin2k(n —1) m)]
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=1+ (1 +0)+ (1 +0)+ oo, + (1 + 0)
= n.

Example 11.6.6. Determine the nine roots of x? — 1 = 0 by De-Moivre’s Theorem
and point out which of these roots satisfy x3 — 1 = 0.

Solution. The given equation is x% — 1 =0

= =1

= x = () = [cos 0 + i sin 0]

= x = [cos (2kn + 0) + i sin 2kn + 0)]'%, k=0, 1,2,3,4,5,6, 7, 8
2kn . . 2km

= X = cos T‘HSIHT, k=0,1,2,3,... 8

The roots of equation (1) are

.. T, . 2m
cos 0 + i sin 0, cos ?+lsm?,

+1isin T coS bm +isin bm
cos —— +i1sin— — +ism—
9 9° 9 9

— 4+ sin8—n coslo—n +1 sinlO—TE
cos 9 9 9

12n . . 12n 14n . . l4=n
cos — + i sin—, cos— + i sin—
9 9 9

lén . . l6m
cos T-f-lSlIl—

ol w2 8t d0m o dn ol l6n
ie. 1, cis =% cis —g7> cis =7, cis 7, cis —o7s cis 7, cls 7, cis —g
The second given equation is x3 — 1 =10 ..(2)

= =1 = x = ()3 = (cos 0 + i sin 0)!73

= (cos 2km + i sin 2km)!3, k=0, 1,2
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2k . . 2km
- = cosT+zsmT where k=0, 1, 2

Putting k=0, x=cos0+isin0=1

2n . 2n .27

k=1, x=cos —/— +isin — =cis —
3 3

P Y | S
=2, X = cos 3 i sin 3 = cis 3

Hence the roots of equation (1) are

- 2km
cis T’ k=0,1,2, 3,.... 8

and common roots of equations (1) and (2) are

1, cis 2_71’ cis an
’ 3 3
Example 11.6.7. If o is a non-real root nth roots of 1, show that
1+ o+ o+t o 1=0.
Solution. Let z=1=cos 0 +isin 0
Z/m = 1Un = (cos 0 + i sin 0)!/7
= [cos (0 + 2km) + i sin (0 + 2km)]'", k=0, 1, 2,.....

2kn . . 2km
= cos—— +ism——, where £k =0, 1, 2,....., (n — 1).
n n

2kn . . 2km ) .
Let o =cos—— +1sin—— such that a is non-real roots of unity.
n n

2kn . . 2km)
Hence l—a =1-]cos _n +1 sm—n 1S a non-zero number

Now L.H.S.
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_.n
l+o+o?+. .. s 1'(11 _ a_n) {Sumofn termsof G.P. = a %
-
[ 2km . . 2kn}n
l—|cos—— +isin—
n n _ 1 —(cos2km + i sin2km)
anon-zero number B 4 NON-ZEro no.
1-(1+0i)
anon-zerono.
=0 R.H.S.
11.7. EXAMINATION ORIENTED EXERCISE
1. Find cube root of unity.
2. Evaluate the following :
(i) (1+0)V° (i0) 3+
3. Find the values of (—;)"9.
4. Find all the values of
1
() (1-43)*3 (i) (cos§+ i sin§j4 (i) (~167)/4

unity.

. Find the continued product of the four values of (cosg +1i singj

2n . .
. Find the four fourth roots of COS? +1 Sln?.

3

2n

3

B3

1 4
. Find all the values of (5 + 71] , and show that their continued product is
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8. (i) Show that the nth roots of unity form a G.P.
(if) How many of the n, nth roots of unity are real ?

9. Find the five fifth roots of unity & prove that the sum of their nth power always
vanishes unless # be a multiple of 5, n being an integer, and when # is a multiple
of 5, the sum is 5.

10. Find all the roots of equation
()xT+1=0 @) X -x5+x4-1=0
i) x*+x3+x2+x+1=0

11. Show that the roots of equation

12. Solve x!2 — 1 = 0 and find which of the roots satisfy the equation x* + xZ + 1
= 0.

13. Show that roots of equation

kn
(5 +x)5 - (5 —x)>=0 are 5ion ?, where k= 0, 1, 2, 3, 4.

14. Use De-Moivre’s theorem to solve
() *-x¥+x2-x+1=0 @) x"+x*+x3+1=0.
11.8. APPLICATION OF DE-MOIVRE’S THEOREM
Now we discuss some applications of De-Moivre’s theorem.
I. Trignometric ratios of Multiple angles.

By the use of De-Moivre’s theorem we can obtain the expansion of cos 76 and sin
n0 in terms of powers of cos 0, sin 0, when # is a positive integer. Also, we can obtain
tan 70 in terms of powers of tan 0.

Now, cos n6 + i sin n0 = (cos 0 + i sin 0)", by De-Moivre’s theorem.
Expanding the R.H.S. by Binomial theorem, we get
cos n0 + i sin n® = cos” 6 + "C, cos" ! O (i sin 0) + "C, cos"2 0

+ (i sin 0)2 + .......... + (i sin 0)"
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= {cos" 0 - "C, cos™2 0 sin?2 O +......}
+i{"C, cos" ! 0 sin 0 — "Csy cos™3 0 sin3 0 +.....+ "L (sin” 0)}
Hence, equating real and imaginary parts, we get
cos n0 = cos "0 — "C, cos”2 0 sin? 0 + (D
and sin n0 = "C, cos” 1 0 sin O — "Csy cos"3 0 sin3 0 + ..(2)
Each series continues till the co-efficients vanish.

From equation (1) and (2), we have, by division,

"C cos" 10 sin — "Cycos" 3 0sin’0 + ........
cos" 0 — "C,cos" 20 sin%0 + .....

tan n0 =

Dividing the numerator and the denominator of the right-hand side by cos” 0, we get

ntan® — "Cytan’ 0+ .......
1-"Cytan® 0+ ..... +(3)

tann6 =

Cor. Putting n = 2, 3, we get

2tan0 3
tan20 = ——— and tan30 = 3tanb —tan” 6

1-tan’6 1-3tan%0

Note. We expanded (cos 0 + i sin 0)" by Binomial Theorem.
Is this expansion valid ? Yes, it is valid.

The Proof of the Binomial theorem.

(x+a)" =x" +"Cpx" la + "Cyx"2a® + ... +a

where x and a are real and 7 is a positive integer, depends only on the ordinary laws

of Algebra.

Complex numbers also obey these laws. Hence the theorem holds even when x and

a are complex numbers.

Example 11.8.1. Expand (i) cos 80 in descending powers of cos ©.

sin 80
(if) cos0 in ascending powers of sin 6.
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Solution. (i) We can write by De-Moivre’s theorem,
cos 80 + i sin 80 = (cos O + i sin 0)8 (D)
Expand the R.H.S. of (1) by Binomial Theorem
cos 80 + i sin 80 = cos® O + 8C1 cos’ O (i sin ) + 8C2 cos® 0 (i sin 0)?
+ 8C3 cos> @ (i sin 0)3 + 8C4 cos* O (i sin 0)* + 8C5 cos> @ (i sin 0)°
+ 8C6 cos? O (i sin 0)° + 8C7 cos O (i sin 8)7 + 8C8 (i sin 0)8
= cos® 0 + 8 cos’” O (i sin B) — 28 cos® O sin? B + i (56) cos® O sin? O

+ 70 cos* O sin? 0 + i (56) cos® O sin® O — 28 cos? 0 sin® O — 8 i cos O sin’ O + sin®
0

cos 80 + isin 80 = (cos® B — 28 cos® O sin? O + 70 cos* O sin* O
— 28 cos? 0 sin® O + sin® B) + i (8 cos’ O sin 6 — 56 cos O sin3 O
+ 56 cos3 O sin® © — 8 cos O sin’ B)  ...(2)
Equating real and imaginary parts, we get

cos 80 = cos® 6 — 28 cos® O sin? 6 + 70 cos* O sin* 6 — 28 cos? O sin® O + sin®
0..3)

and sin 80 = 8 cos’ 0 sin O — 56 cos® 0 sin3 O + 56 cos® O sin® O — 8 cos O sin’ O ...(4)
Putting in R.H.S. of (3), sin2 © = 1 cos? 0, we have
cos 80 = cos® 0 — 28 cos® O (1 — cos? 0) + 70 cos* O (I — cos? 0)?
— 28 cos? 0 (1 — cos? 0)® + (1 — cos? 0)*
= cos® 0 — 28 cos® O (1 — cos? B) + 70 cos* O (1 — 2 cos? O + cos* 0)
— 28 cos? 0 (1 — 3 cos? O + 3 cos* O — cos® 0)
— (1 —4 cos?2 0+ 6cos* -4 cos® O + cos® 0)
cos 80 = 128 cos® 0 — 256 cos® 0 + 160 cos* 0 — 32 cos? 0 + 1 ..(5)
(7) Dividing both sides of (4) by cos 0, we obtain

sin 80
cosO

= 8¢c0s®0 sin0 — 56co0s* 0 sin3 0 + 56 cos2 O sin> O — 8 sin’ O .(6)

Putting cos? 8 = 1 — sin? 6 in R.H.S. of (6), we get
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sin 80
cosO

=8 (1—sin’?0)° sin® — 56 (1 — sin® 0)* sin> O + 56(1 — sin® ) sin> 0 — 8 sin’ O
=8 (1 — 3 sin? 0 + 3 sin* 6 — sin® 0) sin O
— 56 (1 — 2 sin? O + sin* 0) sin® 6 + 56 (1 — sin? 0) sin®> 6 — 8 sin’ O

sin 80
cos0

= 85sin0 — 80 sin> 0 + 192 sin> 0 — 128 sin’ 0.

11.9. EXAMINATION ORIENTED EXERCISE
Prove that
1. cos 30 = — 3 cos O + 4 cos’0
2. cos 40 = cos* @ — 6 cos? O sin? O + sin* 6 = 8 cos* O — 8 cos? 0 +1
3. cos 70 = cos’ O — 21 cos® O sin® O + 35 cos® 0 sin* O — 7 cos O sin? O
4

.sin30=3sin6 —4sin 0

5 si.n69 =32 cos> 0 — 32 cos> O + 6¢0s 0
* sinB
sin70 ) 4 -6
6. — =1-56sin“0+112 cos™ 0 — 64sin” O
* sin0
Write down, in terms of tan 0, the values of
7. tan 40
8. tan 56.
11.10. PASCAL’S RULE FOR WRITING THE BINOMIAL
COEFFICIENTS

1. The series of coefficients in successive powers of [x + ;j beginning with index

1 are as follows :
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1
x+—j 1 2 1
X
1 3
X +— 1 3 3 1
X
1 4
x+—j 1 4 6 4 1
X
1 5
x+—j 1 5 10 10 5 1
X
1 6
x+;j 1 6 15 20 15 6 1
1 7
x+;j 1 7 21 35 35 21 7 1
1 8
X+ ;j 1 8 28 56 70 56 28 8 1 etc.

2. The series of coefficients in successive powers of (x - ;) beginning with index

1 ar as follows :

1 1
X == 1 -1
X
1 2
X—— 1 -2 1
X
1 3
X —— 1 -3 3 -1
X
1 4
x——j 1 —4 6 —4 1
X
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etc.

11.10.1. To express sin” 6, cos” 0 in terms of sines and cosines of multiple of 0,
when n is a positive integer.

Cos”" 0.

Let x = cos O + i sin 6.
1 .
Then — =cosO—isin0
X
x" = (cos0 +isinB)"” = cosnb + i sinnbd

and in = (cos0 — i sin0)" = cosnO — i sinnd
X

x+l=20059, x—l=2isin6

X X
n 1 n 1 .o
x" +— =2cosnb, x" -—— =2isinnd.
x" x"

n
Hence’ (2 COSG)” = [x + lj
X

1 1
+"Cpgx . —— +—
n— x}’l

g 1 _ 1
2"cos" 0 = x" + "Cyx" =+ "Cox" 2 — #C, _xt . ——
1 2 2 n-2 )

X X n
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1 1
:[x" +Lj+ ”Cl(x” +—j+ ”Cz[x'lz + j+ ........ ,
X" xnfl xn72

pairing terms with equal co-efficients

n(n—1)
=2 cos n® + n (2cos(n—1)0) 6 + BT (2 cos(n—2)8) + ...
n(n—1)
or 271 cos” @ = cos n® + n cos (n—2) 0 + 2 cos (n—2)0 +..

Example 11.10.2. Express cos® 0 in a series of cosines of multiples of 6.

(J.U. 1988, 93)

8
1
Solution. (2 cos®)® = ( X+ ;j

8 1
2800586=x8+8x6+28x4+56x2+70+%+2—§+—6+—8
X X X X

=(x8+i8j+8(x6+i6]+28(x4+i4j+56(x2+i2)+70
X X X X

=2 cos 80 + 8 (2 cos 60) + 28 (2 cos 40) + 56 (2 cos 20) + 70.
27 cos® 6 = cos 80 + 8 cos 60 + 28 cos 40 + 56 cos 20 + 30.

11.11. EXAMINATION ORIENTED EXERCISE

AW N -

5.

11.1

Prove the following :

26 cos” @ = cos 70 + 7 cos 50 + 21 cos 30 + 35 cos 6.

28 cos? 0 = (cos 90 + 9 cos 70 + 36 cos 50 + 84 cos 30 + 126 cos 0)
27 sin® @ = (cos 80 — 8 cos 60 + 28 cos 40 — 56 cos 360 + 35)

23 sin® © cos? © = cos 60 — 2 cos 40 — cos 20 + 2

26 sin® O cos* O = sin 76 — 3 sin 50 + sin 30 + 5 sin O

2. SUGGESTED READING

Students are advised to go through following references for details.

11.13. REFERENCE
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(D

2

3)

4

Functions of a Complex Variables by Goyal and Gupta, Pragati Prakashan,
Meerut.

Titu Andreescu and Dorin Andrica, Complex Numbers from A to Z, Birkhauser,
2006.

A text Book of Real and Complex Analysis by Sunil Gupta, Udhay Banu,
Ashok Kumar, Narinder Sharma, Malhotra Brothers, Pacca Danga, Jammu.

James Ward Brown and Ruel V. Churchill, Complex Variables and Applica-
tions, 8th Ed., McGraw — Hill International Edition, 2009.

11.14. MODEL TEST PAPER
1.

(a) Prove that n — nth roots of unity form a series in G.P.

(b) Expand sin® 0 in series of sines of multiples of 0. (J.U. 1995)

|
5 nm
(a) Prove that (1 + i)* + (1 —iy*= 22 cos (T)

1+sin®+icosO) ~ cos n(ﬁ—ej \isin n(ﬁ—ej
b) 1+ sin® —i cosO 2 ) (J.U. 1995)

(a) Prove that seventh roots of unity form a series in G.P.

(b) Prove that

0 no
(1 + cos O + i sin 0)" + (1 + cos O — i sin )" = 2""! COSnE cos—= (J.U. 1995)

m m m
(a) Prove that  (a+ib)" + (a —ib)" =2 (a® + b*)2n cos [ﬂ tan_léj
n a

(b) Find all the values of (1 — 7)1/3. (J.U. 1995)
(a) Prove that sin 70 = 7 sin © — 56 sin® 0 + 112 sin® © — 64 sin’ 0.

(b) Expand sin® 0 in a series of cosines of multiples of 0.
1 4 1

(a) If x+—=2cos0, then prove that X" +— =2 cos 40
X X

1
(b) Find all the values of (—1)1. (J.U. 1994)
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B.A. SEM-1V MATHEMATICS LESSON No. 12

COMPLEX FUNCTIONS

12.1. Introduction : In this lesson the concept of Functions of Complex Variables
particularly exponential and trigonometric functions are discussed.

12.2 Objectives : Objective of studying this lesson is to explain the behavour of
exponential and trigonometric functions when they defined on complex domains.

12.3. FUNCTION OF COMPLEX VARIABLE3

In elementary calculus we introduced real-valued functions of real variables. That is,
we discussed the function y = f{x), where x takes only real values and the corresponding
values of y are also real.

In particular, we defined the trignometric functions sin x, cos x, etc. the exponential
function e*, and the logarithmic function log x.

Now we define these functions for complex z, i.e. z is allowed to take complex values
and the corresponding values of w are also permitted to be complex.

Let us take an example of a complex valued function of a complex variable.
Consider w = z2, where z = x + iy.
Thus, w = (x + iy)? = (x2 — y?) + 2 ixy

If we give any value of to z, say we put z = 3 + 44, the corresponding value of w
is w=(9-16) + 2i 3.4 = -7 + 24i, which is also complex.

Thus, w is a complex valued function of a complex variable z.
12.3.1. The exponential function &%
We know that

&5 = 1+£+—+—+—+ ...... ..(D
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where x € R &

1+ +—+—+—+ ...... (2)

L2314

The expression (1) is called exponential function of x &

* 2 3
1 1 1 1 X
I+ —+—+—+... +[+ ...... =l+x+—+—+...... ..(3)
n

L2 B

We know a real number is a particular case of complex number. Therefore we
define exponential function of a complex quantity z € C & write it as E(z) or exp. (z)
or é ie.

22 Z3
& = exp. (z) = E(2) = 1+z+3+?+ ........ ..(4)
Some authors define ¢ z = x + iy, x, y € R as
e =t = ¢* e = ¢ (cos y + i sin y)
12.3.2. Properties of exponential function e°.

Property 1. exp. (z;) exp (z,) = exp (z; + z,)
Proof. By definition of exponential functions of complex quantity

exp (zy) =1 +z + 12+l§ E ......

= —S S e
exp(zz) 1+z2+12 lé lﬁ

Since the above series are convergent or have finite and unique sum, let them get
multiplied.

Grouping together the terms of the same degree in z; & z, we have

2 2
Zl 22
exp. (z)) exp (z)) = 1 + (z; + z,) + [E+ZIZZ +EJ+ ......

(z; + 22)2 N (z; + 2, )3

1+(ZI+ZZ)+ 12 Ié

=exp. (z; t z,)
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Alternate method.
Let z; = x; + iy; and z, = x, + iyp,.

Then, 71 -e%2 = ex1+iyl e +iy,

e'i.(cos y; +isin y,).e™2.cos(y, +isiny,)

— ex1+x2

{cos(y; + y,) +isin(y; + y,)}
= e(x1+x2)+i(yl+y2)

= ezl+22

Cor 1. The result may be generalized as :

Putting z; = z5 ... =z =z we get
()" = "

Thus, if n be a positive integer, then (e¥)" = "%,
Cor 2. 772 .05 = o(572)%2 — b7

el
—=¢
Z

2175

Cor 3. &e? =102 =0 =

12.3.3. Theorem : ¢ is periodic with period 2mi.

Proof. eZt2mi — p(x+iy)+2mi

= X +i(y+2mi)
= e  [cos (y + 2m) + i sin (y + 2m)]
= ¢* (cos y + i sin y)
=" = &%
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. € is periodic with period 2mi.
12.3.4. Euler’s Exponential values for sin x and cos x.
We know that

&= ¥ (cos y + i sin )
Putting x = 0, we get

e =cosy + isiny (1)
Changing y to —y, we get

e =cosy—isiny .(2)
Adding, we get

ey + e =2cosy

| .
or cos y = E(e’y +e V) ..(3)

Similarly, subtracting we get

ey — e =2 isiny

1. .
or sin y = E(ezy —eV) ()

The formulae (3) and (4) express the sine and cosine of a real variable in terms of
the exponential function and are due to the mathematician Euler.

12.4. THE COMPLEX CIRCULAR FUNCTIONS sin z, cos z.

Again we want to define sin z and cos z in such a manner that they may obey the
same laws as sin x and cos x.

By Euler’s formula.

1 . . 1 . .
cos x = E(elx +e™) and sin x = ?(e”‘ —e™™)
i

We take these as the definitions of cos z and sin z.

Thus,

12.4.1. Definition. cos z = E(elz +€e7%) and sin z = ?(6’2 —e™7)
i
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Note. The other circular functions are defined as in the case of real ariable.

sinz cosz 1
Thus, tan z = ,cotz =——,secz = ,and cosecz = —
cosz sinz cosz sin z

1 . . 1 . .
12.4.2. Remark. We have cos z = E(elz +e”) and sinz= ?(elz +e %)
i

There are two equation given
e = cos z + i sin z.
and eZ=cos z—isin z
2.4.3. Example. Prove that
{sin (o + 0) — € sin 0}" = sin"a.e "0
Solution. L.H.S. = {(sin o cos 0 + cos a sin 0) — (cos a + i sin o) sin 0]”
= (sin o cos O — i sin a sin )"

= sin” o (cos 6 — i sin 0)"

sin” o.(e 0y

= sin” a. ¢

12.4.4. Example. Prove that for complex z

cos?z + sin?z = 1.

) 5 - eiz +e—iz 2 eiz _e—iz 2
Solution. cos“z + sin“z = 5 + by

(eiz + e—iz )2 (eiz _ e—iz )2
- 4 - 4

= l-4eiz e =1

4

12.4.5. Example. Apply the exponential values of sine and cosine to show that :
(f) sin 2z = 2 sin z cos z.

(if) cos 2z = 1 — 2 sin?z = 2 cos? z — 1
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(iif) cos 3z = 4 cos3 z — 3 cos z.

eiz _ e—iz
Solution. As we know sin z = 2— and cos z =
l
2iz _ 2iz 2 Z\2 _ (,—1z\2
(i) LH.S. = sin 2z = < 2_e _ AEE) 4_(e )]
l l

5 (eiz _ e—iZ) (eiz + e—iz

2 5 J = 2 sin z coS z.
—iz

iz_e

2i

eiz_e—iz 2
1 -2sin2z2=1-2|———
2i

(i) As sin z =

2 . . . .
= 1= 2| e2iz 4 g=2iz _Dpiz p—iz
4i2 I: :I

= 1+%|:62iz +e72iz —2]

2iz —2iz
_ 1+ [&J -1
2

= cos 2z

. . \2
elZ +e—lZ
Also 2cosl2z—1=2 [T] -1

_ l[eZiz + e—2iz + 2eiz_e—iz _ 2:|
2

= %[62’7 +e 2 42— 2}
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e2iz + e—2iz
= ———— =—cos2z

e3iZ + e—3iz

(iit) L.H.S. cos 3z = 5

(eiz )3 + (e—iz )3
2

%[(eiz + efi2)3 _ 3eiz'efiz (eiz + e*iz):|
[ @ +b% = (a+b)} - 3ab(a+D)]

4 eiz +e—iz 3 3 eiz +e—iz
2 2

4 (cos z)3 — 3 cos z

= 4 cos’z — 3 cos z = RH.S.
12.5. SUGGESTED READING
The students are advised to go through following references for details.

12.6. REFERENCES

(1) Functions of a Complex Variables by Goyal and Gupta, Pragati Prakashan,
Meerut.

(2) Titu Andreescu and Dorin Andrica, Complex Numbers from A to Z, Birkhauser,
2006.

(3) A text Book of Real and Complex Analysis by Sunil Gupta, Udhay Banu, Ashok
Kumar, Narinder Sharma, Malhotra Brothers, Pacca Danga, Jammu.

(4) James Ward Brown and Ruel V. Churchill, Complex Variables and Applications,
8th Ed., McGraw — Hill International Edition, 2009.

12.7. MODEL TEST PAPER

1
. . . syl
1. Separate into real and imaginary parts e P
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2. Prove that sin (o + 70) — €@ sin n® = ¢ 9 sin a.
Prove that for complex x.
3. sin (—x) = —sin x
4. cos (—x) = cos x.
5. cos 2x = cosZx — sinx = 2 cos?x — 1 = 1 =2 sin?x.
6. sin 3x = 3 sin x — 4 sinx.
7. cos 3x = 4 cos’x — 3 cos x.
8. sin 2x = 2 sin x cos x.
Prove that for complex x and y.
. . . +y xX—-y
9. sinx + sin y = 2 sin cos
+y X—y
10. cos x + cos y = 2 cos CoOsS————.
2 2
skeskeskeskesieskoskoskek

166



B.A. SEM-1V MATHEMATICS LESSON No. 13

FUNCTIONS OF COMPLEX VARIABLE

13.1. Introduction : In this lesson the concept of Functions of Complex Variables
particularly hyperbolic, inverse hyperbolic and their relation with logarithmic functions
are discussed.

13.2 Objectives : Objective of studying this lesson is to explain the properties of
hyperbolic, inverse hyperbolic and their relation with logarithmic functions.

13.3. HYPERBOLIC FUNCTIONS

Z —Z
13.3.1. Definition. For real or complex z, eT is called the hyperbolic cosine

of z and written as cosh z.

zZ _ -z

Similarly i is called the hyperbolic sine of z and written as sin 4 z.
Z 4 o2 zZ _ ,—Z

Thus, cosh z = % and sinh z = %

The hyperbolic tangent, contangent, secant and cosecant are defined terms of the
hyperbolic sine and cosine and in the same manner as the ordinary tangent, cotangent,
secant, and cosecant in terms of the ordinary sine and cosine.

sinhz €7 —-¢e?

Thus, tanhz = =
coshz €7 +e?

e +e’ =

cothz= =
tanhz €% —e %
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sech z = coshz :ez+e_z
n 1 2
cosech z = sinhz e —-¢e?
o _ ,0 1_1
Cor.sinh0=e ¢ =—=0
2 2
O+e % 1+1
cosh o = cre T
2 2
sinho
tanh o = =0
cosho

Thus, sin h o = 0, cosh o = 1, tanh o = 0.

Again,
) e? —e(=2) et —et a ef—e? | _sinh #
sinh(-z) = 5 5 2 .
-z _ ,—(-2) z —z
cosh (—z) = ¢ 2e =L +2€ =coshz.
sinh(-z) —sinhz
L = = = —tanhz
tanh (-2) cosh(-z) coshz :

Thus, sinh (—z) = —sinh z, cosh (—z) = cosh z, and tan h (—z) = —tan h z.

13.3.2. Relation between Circular and Hyperbolic Functions.

ei(iz) _ e—i(iz) e i —ef  i(e? - eZ)

sin. (iz) = 2% 2 a2
= i(e_z —-ef) =i -l(ez —e %) =isinhz.
2 2
i(iz) —i(iz) -z z
Again, cos (iz) = e e _eTTe coshz

2
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sin(iz isinhz .
(iz) = =i.tanh z.

Finally, tan (ZZ) = COS(iZ) coshz

Thus, sin (iz) =i sin h z.
cos (iz) = coshg,
and tan (iz) = i tan hz.
13.3.3. Formulae in hyperbolic functions.

Corresponding to formulae in circular functions there are formula in hyperbolic
functions.

These can be obtained directly from the definitions of hyperbolic functions or from
the above relations between the circular and hyperbolic functions.

13.3.4. Example. cosh?z — sin h?z = 1

eZ +€_Z 2 ez_e_z 2
Solution. cosh?z — sinh?z = — | T3

B 27 424 e727 Q22 D42z -
4 4 '

13.3.5. Example. sin h (x + y) = sin h x cosh y + cosh x + sinh y.
Solution. It is easier to obtain the result by the second method.
For all # and v we have

sin (4 + v) = sin u cos v + cos u + sin v.
Let u=ix and v = iy.
We obtain

sin i(x + y) = sin ix cos iy + cos ix sin iy
or, i sin h(x + y) =i sinh x cos h y + cosh Ax.i sin h y
Cancelling out 7, we get the result.

Note. Since cos (ix) = coshx, it follows that any general formula which is true for
cosines of angle is also true if instead of cos we write cosh.

Again, since sin (iy) = i sin h y, it follow that sin%(iy) = —sinh?y and so any formula
involving the cosines and the square of the sine of an angle is true if for cos we write cosh
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and for sin? we write sinh2.
Similarly, we may prove a formula involving tan? into another by writing tanh? for

tan? .

13.3.6. Period of the hyperbolic functions :
cosh z = cos iz = cos (2n + iz), _ cos z is periodic with period 2.
=cosi(2ni + 2)

cos h 2n i +z)

_cos h z is periodic with period 2mi.

Second Method

e +e?

cosh z =
2

1 : , : . .
= —(e% .M 4 o77 72M) { e2™ = cos2m +isin2m = 1 Also,e 2™ = o 1}
e

— {ez+2m’+e—(z+2m’)}

cos h (z + 2w i)
Hence, the result
Again, i sin h z = sin (iz)

= sin (21 + iz)

sin i 2mi + z)
=isin h 2ni + z)
sinh z = sin h 2ni + z)
Hence, the period of sin h z is 2.
Finally, i tan h z = tan (2)
=tan (—n + iz), __tan z is periodic
=tan i (W + z)
=i, tan h (ni + 2)
tan h z = tan h (mi + iz)
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Hence, period of tan h z is mi.

13.3.7. Series expansions of sinh z and cosh z.

1
cosh z = 5(62 +e?)

1 1+ +i+£+ +]1- +i—i+
= b z X 3 z X 3 (A)

1
sinh z = 5(62 —-e7)

30,5
= Z+—+ —+.
315!

Note : Here again we have assumed that we can combine the terms of two infinite
series in (A).

13.3.8. Example. Separate the following into real and imaginary parts :
(a) sin (a0 + iB) (b) tan (o + iB)
(c) cos h (a0 + iP) (d) cot h (a0 + iP)
Solution. (@) sin (a0 + B) = sin a cos (if) + cos a sin (if)
=sina cos h B +icos asinh f.

sin(a + if)

(b) tan (a + iB) = cos(a + ip)

2sin(a + iB) cos(o — if3)
2cos(o + i) cos(a — iP)

sin 2a + sin 2if3

cos2a + cos 2if

sin2a + isinh 23
cos2a + cosh 23
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Note : We express tan in terms of sin and cos.

Second Method.

Let tan (a0 + i) =x + iy (D
Then, tan (o0 — if) = x — iy .(2)
Now, adding (1) and (2), we get

200 = tan (a0 + iB) + tan (o — iP)

sin(a. + iB) N sin(a —iB)
~ cos(o+iB)  cos(o—iP)

sin(a + i) cos(a — if) + cos(a + i) sin(a — i)
cos(a + i) cos(a — if3)

sin(a +iB+o—iB) 2sin2a
cos2a + cosh2f3

%[cos 20, + cos2if)

2sin2a

~ cos20 + cosh 2B

Similarly substracting (2) from (1), we get

2sinh 23
cos2a + cosh2f3 -

y =

(c) cosh (a0 + iB) = cos i (o + if) = cos (ia — B)
= cos ioL cos B + sin ia sin P
=cos h a cos B + i sin h a sin B.

Note. We express cosh in terms of cosh.

(d) i coth (o + i) = cot i(a + iP) [ cot iz =i coth z]
= cot (io. — PB)

cos(ia — ) ' 2sin(ia. + 3)
- sin(ioc. — ) 2sin(ia + )
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sin 2ai + sin 23
cos 2P — cos2ia

isin 20 + sin 23

cos2P —cosh2a

i(sin2o — isin 2P)
cos2f — cosh2a

sinh 20 — isin 23

coth (o0 + 1B) = 028~ cosh 2a

x2

13.3.9. E le. If sin (A +iB) =x + i that - =1,
xample sin ( iB) = x + iy, prove tha S A cos2 A

Solution. x + iy = sin (A + iB)
=sin A cos h B+ icos Asin hB
[By separating R.H.S. into real and imaginary parts]
.. Equating real and imaginary parts,
x = sin A cos B ..(7)
y =cos A sin h B ...(@0)
We get the desired result by eliminating B from (i) and (ii).

X
F ), hB=———
rom (i), cos SnA

Y
cosA

and from (i7), sin h B =

X2 y2

sin? A cos? A

cosh?B — sinh?B =

X2 y2

sin?A  cos? A’

ie. 1=

(Note that to eliminate B we have made use of the formula cosh?B — sinh?B = 1).
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3
1 + tanh x .
13.3.10. Example. Show that [—) = cosh 6x + sinh 6x.
1—tanh x
3
1+ tanh x
Solution. L.H.S. = (—J
1—tanhx
_1 sinh x 3 X
i coshx | _ {coshx + sinhx}
. sinh x cosh x —sinh x
cosh x

3
_ | € — (er)3 = bx
==

= cosh 6x + sinh 6x = R.H.S.
13.4. EXAMINATION ORIENTED EXERCISE
1. Prove that
(/) cos h (a0 + B) = cosh a cos h B + sinh a sin hf.
(if) sinh 3x = 3 sin h x + 4 sinh3x

3tanh x + tanh3 x
1+ 3tanh? x

(iii) tan 3x =

tano + tanh 3
1+ tanh o + tanh

2. tan (o + B) =

3. cosh (o + ) — cosh (a0 — B) = 2 sin ha sin hp
4. (i) 2 sin h A cos B =sin h (A + B) + sinh (A — B).

cos(x + iy)

(if) show that log [ } is purely imaginary.

cos(x —iy)

5. Iftan y = tan a tanh B and tan z = cot B tanh B, prove that

tan (y + z) = sinh 2 B cosec 2a.
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X 0
6. If cosh x = sec 0, prove that tanh? ) = tan2§'

13.5. THE COMPLEX INVERSE CIRCULAR FUNCTION

13.5.1. Inverse cosine.
If cos (x + iy) = u + iv, then x + iy is defined as an inverse cosine of u + iv.

But cos (x + iy) = cos [2nm £ (x + iy)], so that 2nm = (x + iy) is also an inverse
cosine of u# + iv where #n is an integer including zero.

The inverse cosine of u# + iv is thus a many valued function. When the many-valued
ness of inverse cosine is considered it is written cos™! (u + iv).

The principal value of the inverse cosine of u + iv is that value whose real part lies
between 0 and 7 This value is denoted by cos™!(u + iv).

Thus, we write cos !(u + iv) = 2nm + (x + iy) = 2nm = cos™! (u + iv), to indicate
that all the values of the inverse cosine of (1 + iv) are obtained from the expression 2nmn
+ cos !(u + iv), where cos™! (u + iv) denotes the principal value of the inverse cosine of
u + iv and n is any integer, including zero.

13.5.2. Inverse sine.
Ifu + iv=sin (x + iy) = sin [nn + (-1)" (x + iy)], then nn+ (-1)" (x + iy),is an

inverse sine of u + iv. It is a many valued function and is denoted by sin™! (u + iv).

T

T
Its principal value is such that its real part lies between i) and 3

This value is denoted by sin™! (u + iv).
13.5.3. Inverse tangent.

Ifu + iv=tan (x + iy) =tan [nm + (x + iy)], then nw + (x + iy) is an inverse tangent
of u + iv. It is written as tan!(u + iv).

T

T
Its principal value is such that its real part lies between ) and 3

Thus, tan'(u + iv) = nn + tan"l(x + iy)
Similarly, cot™! (u + iv) = nm + cot (x + iy)
sec l(u + iv) = 2nm + sec! (x + iy),

and cosec L(u + iv) = nm + (—1)"cosec ! (x + iy).
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13.5.4. Example. Separate tan~! (o + iP) + x + iy
Solution. Let tan™! (o0 +iB) = x + iy
Then, tan (x + iy) = a + i (D)

tan (x — iy) = o — if. ..(i0)

(a+iB) +(a—1iB)
tan [(x + iy) + (x + iy)] = 1— (o + iB) (oL — iP)

2a.
or tan 2x = 1—a2—p?
| 20
x =—tan

. (a+iP) — (o +iP)
Again, tan (x + iy —x —iy) = 1+ (o + iB) (00— i)

. 2iB

or tan (2iy) = 1+a2+p2
2p

or, tanh2y = 1+a2+p2

y= L iann-1— 2P

2 1+ 02 +p2
| 20 i 1 2B
Henec, x + iy = Etan 1— o2 _Bz +Etanh 1+ a2 +[32 .

13.6. EXAMINATION ORIENTED EXERCISE
Separate into real and imaginary parts.
1. sin! (cos 0 + i sin B)s, where 0 is a positive angle < m.

2. tan’! (cos © + i sin 0).

3. Prove that sin! (cosec 0) = {2’1 + (‘D"}% +i(=1)" cosh~! (cosec) , when 6
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lies between 0 and .

4. cos! (sec ) = 2nm + i coshI(sec 0), if sec O is positive = 2n + 1)=n
+ i cosh™! (=sech), if sec O is negative.

5. tan! (cos O + i sin 0) = nn i%+étanh_l(5in9)

According as cos 0 its positive or negative.
Prove that

6. Ifa=ib=sin"! (cos O + i sin 0), then cos?a = sinh?b.

7. Ifa =ib=-cos! (a + PB), then a?sec? a + % cosec? a = 1
and o2 sech? b + P2 cosech? b = 1.

tan 20 + tanh 2¢ + tan-! tanO —tan¢

= -1
tan 20 — tan 2¢ tan © + tanh ¢ tan™'(cot 6 coth ¢).

8. Prove that tan~

13.7. INVERSE HYPERBOLIC FUNCTIONS.
If sinh u = z, then u is called an inverse sinh of z and written as sinh™! z.
Similarly other inverse hyperbolic functions can be defined.

It can be shown that if z is real, then sinh~1z, cosh™! tanh~!z, etc are single-valued.
On the other hand, if z is complex, these functions are many valued.

13.7.1. Logarithmic expressions for real inverse hyperbolic functions sinh~Lx.
Let sinh ! x = y

eV —eV eV -1
2 2eY

Then, x =sinhy =
e?¥ —2xe¥ —1=0-

Solving it as a quadratic in ¢, we get

Since ¢” is always positive, we take plus sign before the radical.
Thus, & =x+ Y241 or y= log(x+\/x2+1)

177



Hence, sinh~lx = log (x +/x% + 1)

13.7.2. For cosh lx

Let cosh™! x =y

eV +eV e+l
Then, x = cosh y = 5 = oy
e

e —2xe¥ +1=0

e =x=+ \/x2—1:x+\/x2—1,x—\/x2—1
or y = log (xi\/xz—l)

The convention is to take plus sign before the radical.

Thus, cosh™! x = log (x+\/x2 —1)

13.7.3. For tanh~lx

Let tanhlx = y

ey —efy
Then, x=tanhy = ———
el +eV
1+x 2e&¥ 5 1 1+x
= =& y = —10
1—x 2 or SR S
1 I+ x
Thus, tanh~lx =—log——
2 1-x

13.8. COMPLETE LOGARITHMIC FUNCTIONS

Def. If a = ¢* where o and x are real, we know that x is called the logarithm of
o to the base e.

We now extend this definitions to complex quantities.

If u = ¢*, where u and z are complex, then z is called a logarithm of u to the base
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But u = & = é.e"™ (. €2™ = cos 2nm + i sin 2nm = 1)

— ez+2nTl:.
. z + 2nm is also a logarithm of u to the base e.

The logarithm of of u is thus a many-valued function. We denote this by writing log
u for the general value.

13.8.1. To find all the values of Log x.
Let z=x + iy =r(cos O +isin 0), -1 <0 <m.
=r [cos (2nm + 0) + i sin (2nm + 0)

Where 7 is any integer, and » and 0 satisfy the two equations x = » cos 0, y sin 6,

so that r = \[x2+ )2 and 0 = tan1 2
x

Letlogz =u + iv
Then, z = etV = ¢ (cos v + i sin v)
i.e. r[cos 2nm + 0) +isin 2nm + 0)] = €* (cos v + i sin v)
e¥ = r, so that u = log » and v = 2nm + 6.
Hence, Logz=u +iv =logr+i (2nm + 0).
Thus, Lotz = 2nn + (log r + i0), when n is any integer including zero.

Note. The value obtained by putting n equal to zero is called the principal value of
Log z and is denoted by log z, so that

Log x = 2nm + log z

Thus, log z = log r + i ie Log (x + iy) = log «/xz +y2 +itan*1§

and Log z = 2nmi + (log r + i0)

/ a1V
i.e. Log (x + iy) = 2nmi + (log x2+y? +itan 1;)

13.8.2. Laws of Logarithms
If z; and z, are any two complex numbers, then

(i) log (z4z,) = log z; = log z,

y4
1
(i) log g = log z; — log z,
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(iii) log z," = n log z,

These equations are not necessarily true for the principal value. Actually these
relations express that every value of the left side is equal to some value of the right side.

13.8.3. The logarithm of a positive real number.

We have log (x + iy) = 2nmi + (logmww’tanl%j

Puty =0

We get Log x = 2nmi + log x

Thus, Log x has one real value viz. log x.

which is the ordinary logarithm of x.

Hence, every positive real number has a real logarithm, which is its ordinary logarithm.

Note : It may be noted that the principal value of the logarithm of a +ve real number
is equal to its ordinary logarithm.

13.8.4. The logarithm of a negative real number.
We have
Lot (x + iy) = 2nmi + (log » + i) where x =rcos O y = rsin 0 -t < 0 < 7.
Put y = 0 and x = —a where a is positive.
With these substitutions we obtain » = o sin 6 = m, such that
Log (—a) = 2nmi + log a + iw.
Hence, (a) Log (—a) has no real value,
and (b) the principal value of Log is log o + in  i.e. log (—a) = log o + mi
13.8.5. Example. Find all the values of Log (1 + i).

Solution. Let 1 + i = r (cos O + i sin 0)

Then, r cos © = 1 and r cos 6 = 1, giving r = /2 and 6 =

ENgE

Log (1 + i) = 2nmi + log r + i0
.
= 2nni + log \/§+l'z
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= l10g2 +i(2nn +£j
2 4

13.8.6. Example. Resolve log cos (x + iy) into its real and imaginary parts.
Solution. cos (x + iy) = cos x cosh y — i sin x sinh y

= o + if, where a = cos x cosh y

and B = —sin x sinh y.
Now o2 + B2 = cosx cosh?y + sin? x sinh?y
1 2x 1 h2y 1-cos2 h2y —1 1
+cos2x 1+cos y  1-cos2x cosh2y _ Lcos2x+cosh2y).,
2 2 2 2 2
B__
and = —tanxtanh y
o

Log cos (x + iy) = Log (a0 + i)

2nmi + logaJa? + B2 +itan~! B
o

cos2x +cosh2y

5 —itan~!(tan x tanh y)

1
2nmi +—lo
> g

Note. The method is that we write cos (x + iy) in the form a, B and then use
formula for Log (a0 + B).

N a

These equations give » = 1 and 0 =

. .
log () = log r + 0i = log 1=—i = —20.

Note : Here we had to find the principal value of the logarithm of —i.
13.9. EXAMINATION ORIENTED EXERCISE
Evaluate
1. Log (-3)
2. Logi
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3. Log (-5)
Resolve into real and imaginary parts.
Log sin (x + iv)
log cos (x + iv)
log (-1)
Prove that

7. log (x + iy) = log (x2 + y?) + i tan‘ll.
X

a+lb . —lb
8. loga_ib=21tan "

13.10. THE GENERAL EXPONENTIAL FUNCTION
We know that when a and x are real ¢* = ¢*log @

We take this as the definition of the general exponential function ¢. when a and z
are complex.

Thus, if @ and z are complex
@& = log a
Now, log @ is many valued and so a” is also many-valued.
We have of = ¢#log a = pz = pz(2nm + i log a)
The value of @? obtained by putting n equal to zero is called its principal value.
13.10.1. The general logarithmic function.
Suppose a and z are complex.
a? = w, then z is called a logarithm of w to the base a and we write,
z = Log,w.

13.10.2. Base-changing formula.
Let a2 =w
Then, €082 =

z Log a = Log,w
But z = Log,w
: Log,w. Log,a = Log,w
or, Log,w. = Log,w/Log .a.
13.10.3. Example. Separate (o + iB)**? into real and imaginary parts.
Solution. (o + By = & T ) Log(® * B)

= olx + iy) 2nmi + Log r + i6)
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where » = \Ja? +p2 and 0 = tan”! %

etxlogr—yg+2m)} + j {y log r + x (0 + 2nm)}
= "™ where u = x log r — y(0 + 2nm)
and v =y logr — x(0 + 2nn)
= ¢l el
= ée¥(cos v + i sin v)

13.11. EXAMINATION ORIENTED EXERCISE

Prove that

1. = cos (4m + 1) n—2a+isin(4m+1)%,

(1+i)P+a i B
If —(l —jypdi then one value of tan o S Pm + ¢ log 2.
3. Ifil ... to = a + if3, principal values only being considered, then

tA B
tan — = —and A%+ B2 = ¢ "B
an —- =+

4. If a?"PB + (x + iy)P™ principal values only being considered, then

1 _
x = Eplogo(szryz)—qtan 1%logae_
ap +Pg
and lo 2 42y = 2 .
g Hy) =0 0

5. Prove that the principal value of (¢ + ib)*™P is wholly real or wholly imaginary
i

b
according as B log (a2 + b2) + o tan~! — is an even or an odd multiple of 5
a

13.12. SUGGESTED READING

The students are advised to go through following references for details.

13.13. REFERENCES

(1) Functions of a Complex Variables by Goyal and Gupta, Pragati Prakashan,
Meerut.
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(2) Titu Andreescu and Dorin Andrica, Complex Numbers from A to Z, Birkhauser,
2006.

(3) Atext Book of Real and Complex Analysis by Sunil Gupta, Udhay Banu, Ashok
Kumar, Narinder Sharma, Malhotra Brothers, Pacca Danga, Jammu.

(4) James Ward Brown and Ruel V. Churchill, Complex Variables and Applications,
8th Ed., McGraw — Hill International Edition, 2009.

13.14. MODEL TEST PAPER
Separate into real and imaginary parts :

1. cos (o + iB)

2. cot (a + iB)

3. sec (a + iP)

4. cosec (o + iP)

5. sinh (a0 + iP)

6. sinh B sin o + i cosh B cos o =i cos (a + if)

7. sin 2o + i sinh 23 = 2 sin (a + iP) cos (a — iB)

8. cos(a +if)+isin(a+if)=eP (cosa+isinf)

x2 y2

+ =
cosh?B  sinh?B

9. Ifsin (A+ B)=x + iy, then

2 2 x2 2

X y y
10. If x + i h (u + iv), th - =1 d =1,
x + iy cosh (u + iv), then cos2v sinZv an oiZn s
11. Evaluate log (- 1).
.
12. Prove that log (- i) = —El
skeskeskeskeskeoskskesksk
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B.A. SEM-1V MATHEMATICS LESSON No. 14

SUMMATION OF SERIES

14.1. Introduction : In this lesson the concept of summation of n terms of

trigonometric series is discussed.

14.2 Objectives : Objective of studying this lesson is to explain the summation of n
terms of trigonometric series.

14.3. To find the sum of a series of sines or consines of angles in A.P.
Let us find the sum to n terms of the following series
sinot + sin (a0 + B) + sin (& + 2B) + ceeveeennnen.

The angles are in A.P. their common differences being f3.

Multiplying each term by 2 sin% we have

2sinotsinE = cos(a —EJ —cos(oc +Ej
2 2 2

2sin(o. + B)sinE = cos(a + E] — cos(oc + ﬁ]
2 2 2

2sin(a + 2P) sinE = cos(a + ﬁj - cos((x + ﬁj
2 2 2

2sin(a +n —IB)sin% = cos(a +2n —3%)—005(61 +2n —1%}
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If S denote the sum to n terms, we have by addition

2sinE.S = cos(a —E] — cos(a +2n —IEJ
2 2 2

= 2sin(a +n —lﬁjsinn—B
2 2

sin(a +n —ljsinnB
2 2
S = B

sin

2
Let us now find the sum of the series

cos o + cos (a + B) +

Again multiplying each term by 2 sin b , we have
20050LsinE =sin| a +E —sin| o _B
2 2 2
2cos(o + [3)sinE =sin| o + B sin| o + B
2 2 2

2cos(o + 2[3)sing = Sin((x + Sﬁj - sin[(x T %j

2cos(a+n —IB)sin% = sin(ocnL 2n—1%)—sin(a +2n —3%)

If S denote the sum to n terms, we have by addition
25inE-S=sin 0L+2n—1E —sin OL—E
2 2 2
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- 2005((1 +n —IEjsinn—[3
2 2

cos((x +n —1E sinn—B
2 2

S - B

sin—
2

14.3.1. Example. Sum to n terms the series :
sin x + sin 2x + sin 3x +

Solution. Here oo = x and B = x

) —Xx) . nx
sin| x+n—1— |sin—
[ 2) 2

S = X
sin =
2

sin(n + 1)i -sin 2%
2 2

. X
sin—
2

14.3.2. Example. Sum to n terms the series :

i 3n 5w
COS— + COS— + COS— +...........
2n 2n 2n

i i
Solution. Here oo =—and=—
2n n

T O —— T ). T T . T
cos| —+n—1— [sinn-— COS— - Sin —
2n 2 2

2n 2n

S =

14.3.3. Example. Sum to n terms the series :

cos2x + cos?2x + cos? 3x + ...
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1+ cos2x

Solution. cos?x = 5
5 1+ cosdx
Cos“2x = —(———
2
5 1+ cos6x
cos“3x = T

n 1

= —+—(cos2x +cos4x +cosbx +........ to n terms)
n 1 cos(2x+n—1x)sinnx
2 2 sin x

n. cos(n +1)xsinnx

2 2sinx

14.4. EXAMINATION ORIENTED EXERCISES

Sum up the following series upto n terms :

1. sin x + sin (x — ) + sin (x — 2y) + ........

sinda. — sin3(a + B) + sind(a + 2B) + .o
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2. cos x +cos 2x + cos 3x + ...

3. sino —sin (o + B) + sin (a0 + 2B) — sin (a0 + 3B) + ......
4. cosx —cos (x +y) +cos (x +2y) —cos (x + 3y) + ...
5. sin x cos x + sin 2x cos2x + sin 3x cos 3x + ...........

6. cosZa — cos?(a + B) + cos? (o + 2B) — cos? (a + 3P) +
7. sin?x + sin®2x + sin? 3x + .o .

8. cos’a + cos33a + cos3SaL + ... .
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10. sin o sin 2o + sin 2o sin 3o + sin 4o + ........... .

11. P £+cos3—n+cos5—n+cos7—n+cos9—n—
- FTOve €0s 11 1 11 1

12. sinh u + sinh (u + v) + sinh (u + 2v) +

13. cosh a + cosh (a + b) + cosh (a + 2b) + ............. .

14.5. METHOD OF DIFFERENCE
14.5.1. Formulaes

o
cosec o = cot 5—cotoc

tan o = cot a — 2 cot 2a.

tan o sec 200 = tan 2o — tan o

cosec a cosec (a + B) = cosec B [cot o — cot (o + B)]
sec a sec (o + ) = cosec B [tan (a0 + ) — tan o

tanZa, tan 200 = tan 200 — 2 tan a

sindo = %(3 sino — sin 3a.)

cosda = %(3 cosal + cos3a)

tan o tan (o + B) = cot B [tan (a0 + B) — tan a] — 1
14.5.2. Example. Sum the series

cosec o + cosec 2a + cosec 4o + .......... + cosec 2" 1q.

1 cosal
+

Solution. cosec a + cot o = — :
sino.  sino

1+ cosa

sin o



o
cosec o = cot 5—cotoc

cosec 2o = cot o — cot 2a
cosec 4o = cot 20 — cot 22a
cosec 2" la = cosec 2" 2 — cosec 2" la,

.. Adding up, we get
S = cotg—c0t2"*1a
2
14.5.3. Example. Sum up to n terms the series :

tan oo + 2 tan 200 + 22 tan 2200 + eeeeevereeinn

sino.  cosa

Solution. tan o — cot o = -
coso.  sina

2 2

sin“ o — cos“ o

sin oLcos o
—cos2a

lsin 20
2

tan o = cot oo — 2 cot 2a
tan 20 = cot 200 — 2 cot 22q
tan 220, = cot 2200 — 2 cot 23a
tan 2" lg, = cot 2" o — cot 2"
Multiplying by 1, 2, 22, ........ 271 successively and adding we get

S = cot oo — 2" cot 2" a..
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14.5.4. Example. Sum the series :

-1 -1 +...tonterms

l——+tan ———+tan —
BT 1+2+22 1+3+32
Solution. Now T, = tan! 1 —tan_l—1 = tan~! 2-1
olution. Now T, = tan™ 12 1+2 1+2.1
= T, =tan! 2 — tan~'1 wtan”! 2= = tan~ x—tan "l y
1 1+xy
Al T, = —1 —1 =tan~ ! —— = tan~! 3-2
50 2= 2 1+6 1+3.2
= T, = tan"! 3 — tan"! 2
Similarly T; = tan"! 4 — tan”! 3
— -1 -1
T,=tan" (n + 1) - tan"'n
Adding vertically and cancelling like terms, we get
S, =T, + Ty + T+ v +T, =tan! (n + 1) - tan”! 1
_ tan,1 w = tan_l n
1+(n+1)-1 n+2)

. . . . + +
14.5.5. Example cosO+cos30 cosO+cos50 cosO+cos7O
1

Solution. Here T, = ————
olution e cos0 + cos30

1 1 sin©
T 2c0820cosO  2sinO | cos20cosO

cosecB { sin(20 — 0) }

2 cos20cos0
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B cosec O/ sin20cosO — cos20sin O
B 2 L cos20cos 6

2 | cos20cosO cos26cosH

cosecO sin20cos® cos20sin O J

= coszec 0 [tan 20 —tan 9]

1 cosecO

= = tan20 —tan©
T cos0 + cos30 2 [ ]

o 1 cosecB

Similarly T, = 050100530~ 2 [tan 30 —tan 29]
1 cosecO

T, = = tan 40 — tan 30
3 cos0 +cos70 2 [ ]
1 cosecO

n " cosO+cos2n+1)0 T[tan(n +1)0 — tan 16|

[nth term of 3,5, 7, .= 3 + (n— 1) x 2 = 2n + 1]

Adding vertically, we get the required sum

- Coszece [tan(n +1)0 — tan 0]

%cosece[tan(n +1)0 —tan#].

14.6. EXAMINATION ORIENTED EXERCISES

Sum the following series to n terms :

o o
1. COSECO +COSeC— +COSeC— +..ovvve.
2 2

2. cosec o cosec 2o + cosec 2a cosec 3o + cosec 3a cosec 4o + .......
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sin 0 N sin O N sin 0
sin20sin30 sin30sin40 sin40sin50

1 1 1
+ +
cos0+cos30 cosO+cosS50 cosO+cos70

7. tan o tan 2o + tan 2o tan 4o + tan 3o tan 8a +..........

tan_1—+tan_ —_— _—
8. 1+1+12 1+2+22 1+ n+n?

4 1
tal'l_l _—
2. kZ:“l (3+3k+k2j'

10. tan! l +tan~! l +tan~! i o
3 7 13

+tan~! 6 +tanl—— 4
1+3-4 1+8-9 1+15-16

11. tan~!

12. tan™! 1 + tan™! 2 +tan~! 4 F oo
3 9 33

13. tan x + 1tan + ! tan
. Jtan X 4 —tan>
¢ 2 2 22 22

14.7. C +iS METHOD

List of some standard series.

Following formulaes will help students to solve C + iS method.

nintl) o nn+hn+2) 5

1. 1-x)"=1+nx + o 3
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N n(n—l)x2_n(n—l)(n—2)x3jL

(1-x"=1-nx o 3

n(n+1) 2o n(n+1)(n+2) B4
2! 3!

1+x)"=1-mnx +

2 3 4
e =1+x+ i +x—+x—+ ........
21 31 41
2 3 4
e ¥X=1-x+ x__x_+x__ ...........
21 31 4!
2 .4
X X
coshx=1+—+—+.....
21 4!
3 5
x> x
simhx= —+—+........
31 5!
x2 Xt
cosx=1l-—+——........
21 4!
3 x
sinx = xX——+——..oeue.
3t 5!
X3 2x
tan x = x+—+—+........
15
2 3
X X
log(1+x)= x——+——.........
g ( ) 73

- x+_+x_+£+
log (1 —x) = S Tyt e



15. _

The method of summation will be illustrated with the help of an example.

14.7.1. Example. Sum to n terms, and to infinity, the series

1 +ccosa+ ccos 20 + . R
where c¢ is less than one numerically.
Solution. Let
C=1+ccosa+c?cos 2+ ... + ¢ cos (n —1)a
and S =c¢sin o + ¢ sin 20 + ........ + ¢~ Lsin (n — Do

Then, C +iS =1+ ce® + ¢? 2@ + . 4" eln-Dia

Now, we separate the right-hand expression into real and imaginary parts.

Hence, by equating real and imaginary parts, we get

c=_

Asn [ o, ¢"and "1 > 0
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1—ccosa

Sum to infinity = 1= 2¢ cosa + 2

Note. It may be noted that there are main steps in the process.
1. Forming C + i S.

2. Find the sum of the resulting G.P.

3. Resolving the sum into real and imaginary

14.7.2. Example. Sum the series to infinity.

1 . 1-3 .
S = —sino + ——sin2a + sin3a +.....
2 2-
1 1-3 .
Solution. Let = —coso+——cos2a + cos3a +........
2 2-4
1 . 1-3 .. 1-3-5
+ S = —€e% + e2io 4 3% 4 toinfinite
Then, C +iS 5 W ) 4.6

1
= (1-¢i®) 2 by the Binomial theorem

1
= [1-(cosa +isina)] 2

1

= (I-coso—isina) 2

1
= 2sin22— 2isingcosg 2
2 2 2

1

1

o) 2 T a) .. (n a)|2
2sin— cos| ——— |—isin| ———
(23 ew(5-5)-m( 35

1 T—o .. T—0O
= coSs +isin
4 4

\/2sina
2
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.. Equating imaginary parts, we get

1 . M=o
S = .sin

\/Zsina 4
2

14.7.3. Example. Sum to infinity the series :

C = cosoL— %cos(a +2B) + %cos(oc +4B) —......tow
. 1. 1 .
Solution. Let S = sina-— ysm(a +2B) + ;sm(a +4B)—........ tooo
- o L ia42B) L L i(ard
Then, C+iS=¢e _561((” ) +§ez(o¢+ B) +....tooo
elOL
= —.{e’ﬁ ——eB B to oo}
elB 3 |

= ¢i(a=B) .sin P using the series for sin z
= ¢(a=PB) .sin(cosp + isinP)
= [cos(a — B) + isin(a — )] [sin(cos [) cosh(sin ) + i cos(cos ) sinh(sin B)]
.. Equating real part, we gfet
C= [cos(oc —B)sin(cos ) cosh(sin ) — sin(a — B) cos(cos ) sinh(sin B)]
14.7.4. Example. Find the sum to infinity of the series :

cos30 +....

l—lcos9+ﬁc0529—
2 2.4

Solution. Let C =1 — %cose+%cos,29— c0s30 +...0

S—0_ Lsino+ 3 sinog_ 133
2 2.4 2.4
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=(1+e9)712 = (1+cos0 +isin0)~1/2
-1/2 -1/2 -1/2
= 200529-|—2isin900s9 = 2cos9 cosg+isin9
2 2 2 2 2 2

1
= 200s29 2 cosg—isin9
2 4 4

Equating real parts.

14.7.5. Example. Sum the series :

COS2 a COS3 (04

cos2p — Ié

cos3P +...0

1—cosacosf +

COS2 (0 COS3 (0

Solution. Let C = 1—cosoacosf + 2 cos2f — E cos3B +...0

2 3
. cos“a . cos” a
g = 0—cosasinP +-———sin?p —

12 13

sin3f +...0

COS2 [0
[2

C + S = l—cosa(cosB+isinf)+ (cos2B +isin2pP)

COS3 a

3

(cos3B +isin3p) +....




[
—_
|
N
+
|
+
8
N
I
N
=
(]
=}
w2
Q

= pZ = g—C0sa i} — p,—cosa(cosP+isinf)

= g—cosocosP ,—icosasinf

g—cosa.cosp [cos(cos asin ) — isin(cos asin B)]
Equating real parts,
C = ¢cosacosP cog(cosasin) -

14.8. EXAMINATION ORIENTED EXERCISES

Sum the series

. 1. 1 .
1. sina+ Esm 200 + 2—2$1n 30+ s to infinity.
2. sina+csin(o+B) +cZsin(o+ 2B) +.... to n terms & to oo

2

3. sina seco + sin 2a sec?a + sin 3a secol + ... to n terms.

4. cos O cos O + cos30 cos 30 + cos°0 cos O + ......... to n terms.

5, cos@+§cosZO +3chos36+....t0 7 terms.

. 1. 1-3 .
6. sino+—sin3o +——sinSo +.....to
2 2-4

2 3
cos- o cos” o
7. 1l-cosacosP+ o cos2p — 3 cos3p +...to
8. sin a + x sin (o0 + B) + x2 sin (o + 2PB) + ......... to n terms

1 1-3
9, l+—cosa+——cos2a + cos3a +....toow
2 2-4

sinBcos20 sinZ Hcos30
10. cosO + T + TR tooo




14.9. SUGGESTED READING

The students are advised to go through following references for details.

14.10. REFERENCES
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(2) Titu Andreescu and Dorin Andrica, Complex Numbers from A to Z, Birkhauser,

2006.

(3) Atext Book of Real and Complex Analysis by Sunil Gupta, Udhay Banu, Ashok

Kumar, Narinder Sharma, Malhotra Brothers, Pacca Danga, Jammu.

(4) James Ward Brown and Ruel V. Churchill, Complex Variables and Applications,

8th Ed., McGraw — Hill International Edition, 2009.
14.11. MODEL TEST PAPER

Q.1. Find the sum to infinity of the series

l—lcose+1.200526—l.§.§cos39+ ............
2 2 4 246

. 1 5. l 5.
Q.2. Find the sum to infinity S = xsina + §x3 sin3a. + gxs sinda +.....

OL+2B)+

. . sin
Q.3. Find the sum to infinity S = sina + xsin(o + ) + x? ( o

2 3

c c
Q.4. Find the sum to infinity S = ccosa + 7c0s2a + ?cos?aoc F oo
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